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Minimax Machine Learning

Conventional Empirical Risk Minimization: Given training data
z1, ..., zn, we minimize an empirical risk function,

min
θ

1

n

n∑
i=1

f(zi; θ).

Minimax Formulation: We solve a minimax problem,

min
θ

max
φ

1

n

n∑
i=1

f(zi; θ, φ).

More Flexible.
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Motivating Application: Robust Deep Learning

Neural Networks are vulnerable to adversarial examples
(Goodfellow et al. 2014, Madry et al. 2017).

Adversarial ExampleClean Sample Perturbation

Adversarial Perturbation: max
δi∈B

`(f(xi + δi; θ), yi),

Adversarial Training: min
θ

1

n

n∑
i=1

max
δi∈B

`(f(xi + δi; θ), yi),

where δi ∈ B denotes the imperceptible perturbation.
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Motivating Application: Image Generation

Brock et al. (2019)

All are fake!
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Motivating Application: Unsupervised Learning

Generative Adversarial Network: Goodfellow et al. (2014),
Arjovsky et al. (2017), Miyato et al. (2018), Brock et al. (2019)

min
θ

max
W

1

n

n∑
i=1

φ (A(DW(xi))) + Ex∼DGθ [φ (1−A(DW(x)))].

DW : Discriminator; Gθ: Generator; φ: log()̇ and A: Softmax.
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Motivating Application: Reinforcement Learning
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Motivating Application: Reinforcement Learning

Minimax Formulation: Given M = (A,A, P,R, γ), we solve

min
π,V

max
ν

L(π, V ; ν) = 2Es,a,s′ [ν(s, a)(R(s, a) + γV (s′)

− λ log(π(a|s))]− Es,a,s′ν2(s, a),

where s denotes the state, a denotes the action, and

Policy: π : S → P(A),

Value: V : S → R,

Reward: R : S ×A → R,

Axillary Dual: ν : S ×A → R.

The policy π is parameterized as a neural network, where as ν is
parameterized as a reproducing kernel function (Dai et al. 2018).
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Successes of Minimax Machine Learning

Adversarial Robust Learning

Unsupervised Learning

Learning with Constraints

Reinforcement Learning

Domain Adaptation

Generative Adversarial Imitation Learning

. . .

=⇒ Identify the fundamental hardness of minimax machine
learning and make optimization easier.
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Challenges
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Minimax Optimization

General Formula:
min
x∈X

max
y∈Y

f(x, y),

X ⊂ Rd, Y ⊂ Rp, f is some continuous function.

Two Stage Optimization:

Stage 1: g(x) = maxy∈Y f(x, y),

Stage 2: minx∈X g(x),

Solve Stage 2 using gradient descent.

Limitation: A global maximum of maxy∈Y f(x, y) needs to be
obtained for evaluating ∇g(x) (Envelope Theorem, Afriat et al.
(1971)).
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Existing Literature

Bilinear Saddle Point Problem:

min
x∈X

{
p(x) + max

y∈Y
〈Ax, y〉 − q(y)

}
.

X ⊂ Rd and Y ⊂ Rp: closed convex domain; A ∈ Rp×d;
p(·) and q(·): convex functions satisfying certain assumptions.

Nice Structure: Convex in x and Concave in y; Bilinear
interaction (can be slightly relaxed).

Algorithms with Theoretical Guarantees:

Primal-Dual Algorihtm, Mirror-Prox Algorithm · · · (Nemirovski
2005, Chen et al. 2014, Dang et al. 2015).
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Challenges: Nonconcavity of Inner Maximization

Recall Stage 2: min
x∈X

{
g(x) := max

y∈Y
f(x, y)

}
.

Why Fail to Converge?: ỹ 6= arg maxy f(x, y) may even lead to〈
∂g(x)

∂x
,
∂f(x, ỹ)

∂x

〉
� 0.

Noisy Gradient

θ

φ

θ

Minimization Minmax

Limit Cycles
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Our Proposed Solutions

State of the Art:

Convex-concave: Well studied.

Nonconvex-concave: Limitedly studied.
Reinforcement Learning: Dai et al. (2018); Constrained
OptimizationChen et al. (2019); · · ·
Beyond: No algorithm works well.

Our Solutions:

Improving Landscape and Learning to Optimize
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Generative Adversarial Networks

Highly Nonconvex-Nonconcave Minimax Problem:

min
θ

max
W

1

n

n∑
i=1

φ (A(DW(xi))) + Ex∼DGθ [φ (1−A(DW(x)))].

DW : Discriminator; Gθ: Generator; φ,A: Properly chosen
functions (e.g., log(·) and Softmax).

Tuo Zhao — Towards Principled Methodologies and Efficient Algorithms for Minimax Machine Learning 13/38



VALSE Webinar, Jun. 26 2019

Generative Adversarial Networks

Instability Issue: Mode Collapse
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Stabilizing GAN Training

Better Algorithm:

Two Time-Scale Update

Functional Gradient

Progressive Learning

. . .

Better Landscape:

Gradient Penalty

Weight Clipping

Orthogonal
Regularization

Spectral Normalization

. . .

Algorithm works only if the landscape is good enough.

Tuo Zhao — Towards Principled Methodologies and Efficient Algorithms for Minimax Machine Learning 15/38



VALSE Webinar, Jun. 26 2019

Stabilizing GAN Training

Better Algorithm:

Two Time-Scale Update

Functional Gradient

Progressive Learning

. . .

Better Landscape:

Gradient Penalty

Weight Clipping

Orthogonal
Regularization

Spectral Normalization

. . .

Algorithm works only if the landscape is good enough.

Tuo Zhao — Towards Principled Methodologies and Efficient Algorithms for Minimax Machine Learning 15/38



VALSE Webinar, Jun. 26 2019

Better Optimization Landscape

Lipschitz Continuous Discriminator:

An L-layer discriminator can be formulated as follows:

DW(x) = WLσL−1(WL−1 · · ·σ1(W1x) · · · ),
where Wi’s are weight matrices and σi’s are activations.

1-Lipschitz condition:

|DW(x)−DW(x′)| ≤
∥∥x− x′∥∥

Inspired by Wasserstein GAN (Arjovsky et al., 2017)

Empirically works well, but why?
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Control Weight Matrix Scaling

Scaling Issue: Consider a simple 2-layer discriminator with ReLU
activation (σ(·) = max(·, 0)):

DW(x) = W2σ(W1x).

Since the ReLU activation is homogeneous, we can rescale the
weight matrices by a factor λ > 0 as

W1 ⇒ λ ·W1 W2 ⇒W2/λ.

Although the neural network model remains the same, the
optimization landscape becomes worse.

Orthogonal Regularization:

min
W1,W2

L(W1,W2) + λ
(∥∥∥W>1 W1 − I

∥∥∥2

F
+
∥∥∥W>2 W2 − I

∥∥∥2

F

)
.
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Illustrations of Landscape

min
x,y
F(x, y) = (1− xy)2,

min
x,y
Fλ(x, y) = (1− xy)2 + λ(x2 − y2)2.

x

y

F(x, y)

x

y F(x, y)

x

y

F�(x, y)

x

y F�(x, y)
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Also Improves Generalization

Theorem (Informal, Jiang et al. 2019)

Under some technical assumptions and assume

‖Wi‖2 ≤ BWi for i ∈ [L] and ‖xk‖2 ≤ Bx for k ∈ [n].

Generator and discriminator are well trained, i.e.,

dF ,φ(µ̂n, νn)− inf
ν∈DG

dF ,φ(µ̂n, ν) ≤ ε,

where dF ,φ(·, ·) is the neural distance with probability at
least 1− δ, we have

dF ,φ(µ, νn)− inf
ν∈DG

dF ,φ(µ, ν) ≤ Õ
(
Bx
∏L
i=1BWi

√
d2L√

n

)
.
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From Lipschitz Continuity to Generalization

Importance of Spectrum Control:

dF ,φ(µ, νn)− inf
ν∈DG

dF ,φ(µ, ν) ≤ Õ
(
Bx
∏L
i=1BWi

√
d2L√

n

)
.

1-Lipschitz =⇒ polynomial bound Õ

(√
d2L
n

)
.

Controling the product of spectral norms avoids bad
landscape and benefits the generalization of GANs.

Tuo Zhao — Towards Principled Methodologies and Efficient Algorithms for Minimax Machine Learning 20/38



VALSE Webinar, Jun. 26 2019

Better then Orthogonal Regularization

Spectral Normalization (SN, Miyato et al. 2018):

25000 50000 75000 100000 125000 150000 175000 200000

5

6

7

8

9

SN (Miyato et al. 2018)

SN (Alternative)

Orthgonal Regularization

Inception Score on STL-10

Miyato et al. (2018) > Orth. Reg. > SN (Alternative)
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Better than Spectral Normalization

Singular Value Decay: Decay patterns of sorted singular values
of weight matrices.

0.0 0.2 0.4 0.6 0.8 1.0

0.994
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5-th layer

6-th layer
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0.2
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Orthogonal Reg. Miyato et al. 2018 SN (Alt.) Jiang et al. (2019)
No Decay Slow Decay Fast Decay Slower Decay
IS: 8.77 IS: 8.83 IS: 8.69 IS: 9.25

Observation: Slow singular value decay is better than both
no decay and fast decay.
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Experiments (CIFAR10 and STL-10)

CIFAR: FID CIFAR: Inception Score

STL: FID STL: Inception Score
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Experiments (ImageNet)

Valley Jellyfish Pizza

Anemone Shoji Brain Coral

Cardoon Altar Jack-o’-lantern
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Adversarial Training

Adversarial ExampleClean Sample Perturbation

Highly Nonconvex-Nonconcave Minimax Problem:

min
θ

1

n

n∑
i=1

(max
δi∈B

`(f(xi + δi; θ), yi).

xi: feature; yi: label; δi: perturbation;

f(·; θ): neural network; `: loss function; B: constraint;
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Adversarial Training

min
θ

1

n

n∑
i=1

(max
δi∈B

`(f(xi + δi; θ), yi).

Two Stage Optimization:

Inner Maximization Problem (Attack)

Outer Minimization Problem (Defense)

Popular Approaches for Attack:

Fast Gradient Sign Method (Goodfellow et al. (2014))

Projected Gradient Method (Kurakin et al. (2016))

Carlini-Wagner Attack (Paszke et al. (2017))
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Learn to Learn/Optimize (L2L)

High Level Idea:

Cast the optimizer as a learning model;

Allow the model to learn to exploit structure automatically.

Implementation: Parameterize optimizer as a neural network,
and learn its parameters (Andrychowicz et al. 2016).

Optimization 
Algorithms

(e.g., Gradient 
Descent)

x0
<latexit sha1_base64="pJX5d/KVD2TALrkO//cbwYf0jxQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AELeo2j</latexit>

Initial 
Solution        

Gradient

rf(xt)
<latexit sha1_base64="2wkOktp8wgq5ZwsD8qB2VvNlNqY=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEYwTwgWcLsZDYZMju7zvQGQ8h3ePGgiFc/xpt/4+Rx0MSChqKqm+6uIJHCoOt+O5m19Y3Nrex2bmd3b/8gf3hUN3GqGa+xWMa6GVDDpVC8hgIlbyaa0yiQvBEMbqd+Y8i1EbF6wFHC/Yj2lAgFo2glv61oICkJi08dPO/kC27JnYGsEm9BCrBAtZP/andjlkZcIZPUmJbnJuiPqUbBJJ/k2qnhCWUD2uMtSxWNuPHHs6Mn5MwqXRLG2pZCMlN/T4xpZMwoCmxnRLFvlr2p+J/XSjG89sdCJSlyxeaLwlQSjMk0AdIVmjOUI0so08LeSlifasrQ5pSzIXjLL6+SernkXZTK95eFys0ijiycwCkUwYMrqMAdVKEGDB7hGV7hzRk6L8678zFvzTiLmWP4A+fzB9WIkXw=</latexit>

Output
Solution        

xT
<latexit sha1_base64="X9lF3KKIwpkijMFVCiEBA1kh19o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4j5gXJEmYnvcmQ2dllZlYMIZ/gxYMiXv0ib/6Nk2QPmljQUFR1090VJIJr47rfTm5tfWNzK79d2Nnd2z8oHh41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfmtR1Sax7Juxgn6ER1IHnJGjZUennr1XrHklt05yCrxMlKCDLVe8avbj1kaoTRMUK07npsYf0KV4UzgtNBNNSaUjegAO5ZKGqH2J/NTp+TMKn0SxsqWNGSu/p6Y0EjrcRTYzoiaoV72ZuJ/Xic14bU/4TJJDUq2WBSmgpiYzP4mfa6QGTG2hDLF7a2EDamizNh0CjYEb/nlVdKslL2LcuX+slS9yeLIwwmcwjl4cAVVuIMaNIDBAJ7hFd4c4bw4787HojXnZDPH8AfO5w9CCo3H</latexit>

V. S.
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Learn to Learn/Optimize (L2L)

Advantages:

Attacker Network is powerful in representation.

=⇒ Yield strong and flexible perturbations.

Shared attacker model.

=⇒ Learn common structures across all perturbations.

Learning through overparametrization.

=⇒ Ease the training process.

Reduce search space.

=⇒ Computational efficiency
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Learn to Learn/Optimize (L2L)

New Formulation:

min
θ

max
φ

1

n

n∑
i=1

[
`(f(xi + g(A(xi, yi, θ);φ); θ), yi)

]
,

Notations:

f(·; θ): Classifier;

g(·;φ): Attacker/Optimizer;

A(xi, yi, θ): Input of Optimizer g (Interact g with f via A).
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Learn to Attack:

Grad L2L: Motivated by gradient ascent with

A(xi, yi, θ) = [xi,∇x`(f(xi; θ), yi)].

Original Input

Classifier ℎ

Attacker 𝑔

Gradient w.r.t. Input

Noise Perturbed InputsConcatenate
Input and Gradient

Clean Loss

Adv. Loss

+

Backpropagation

Multi-Step Grad L2L: Recursively apply Grad L2L (RNN).
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Experiments

Accuracy on Clean Samples and PGM adversaries

Per Iteration Computational Cost
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Smoothed Bellman Error Minimization

Minimax Formulation: Given M = (A,A, P,R, γ), we solve

min
π,V

max
ν

L(π, V ; ν) = 2Es,a,s′ [ν(s, a)(R(s, a) + γV (s′)

− λ log(π(a|s))]− Es,a,s′ν2(s, a),

where s denotes the state, a denotes the action, and

Policy: π : S → P(A),

Value: V : S → R,

Reward: R : S ×A → R,

Axillary Dual: ν : S ×A → R.

The policy π and ν are parameterized as a neural network and
a reproducing kernel function, respectively (Dai et al. 2018).
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Parameterization of V , π and ν

State Approximation: There exists a feature vector ψ(s)
associated with every state s ∈ S.

Neural Networks for π and V :

π(aj |s) = fj(ψ(s); Θ) and V (s) = h(ψ(s),∆),

where fj is a neural network with parameter Θ and∑
aj∈A π(aj |s) = 1.

Reproducing Kernel Functions for ν:

ν(aj |s) = gj(ψ(s); Ω),

where gj is a reproducing kernel function with parameter Ω.
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Benefit of Reproducing Kernel Parameterization

Alternative Minimax Formulation:

min
∆,Θ

max
Ω∈C
L(∆,Θ,Ω)−R(Ω)

,

where R(Ω) is a strongly concave regularizer.

Stochastic Alternating Gradient Algorithm:

Ω(t+1) = ΠC(Ω
(t) + ηΩ∇ΩL̃(∆(t),Θ(t),Ω(t))),

∆(t+1) = ∆(t) − η∆∇∆L̃
′(∆(t),Θ(t),Ω(t+1)),

V (t+1) = V (t) − ηV∇V L̃′(∆(t),Θ(t),Ω(t+1)),

where ηV , η∆ and ηΩ are properly chosen step sizes, and L̃ and L̃′

are unbiased independent stochastic approximations of L.
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Sublinear Convergence

Theorem (Informal, Chen et al. 2019)

Given a pre-specified error ε > 0, we assume that L(∆,Θ,Ω) is
sufficiently smooth in ∆,Θ,Ω ∈ C, and strongly concave in Ω.
Given properly chosen step sizes and a batch size of O(1/ε), we
need at most

T = Õ(1/ε)

iterations such that

min
1≤t≤T

E
∥∥∥∇∆L(∆t,Θ(t),Ω(t+1))

∥∥∥2

2
+ E

∥∥∥∇ΘL(∆t,Θ(t),Ω(t+1))
∥∥∥2

2

+ E
∥∥∥Ω(t) −ΠC(Ω

(t) +∇ΩL̃(∆(t),Θ(t),Ω(t)))
∥∥∥2

2
≤ ε.
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Experiments

Reproducing Kernel v.s. Neural Networks for ν.
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Figure 3: Performance of the learned policy during training iterations, from GMMIL (red) and GAIL (blue). The x-axis is the
iteration, and the y-axis is the scaled return of the policy. We used the settings with the largest number of expert trajectories,
i.e. 25 for half cheetah, hopper, walker, and ant; 240 for humanoid tasks. These results are from single TRPO gradient update
per iteration.
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Figure 4: Performance of the learned policy during training iterations using importance sampling to perform 5 TRPO gradient
updates per iteration, both for GMMIL (red) and GAIL (blue). Note that the x-axis scales are different from Fig. 3.

measures of the learned policy and the expert policy. This
allows our approach to avoid the hard minimax optimiza-
tion of GAN inherent to training in GAIL, which results in
more robust and sample-efficient imitation learning. As an
end result, our approach becomes an imitation learning ver-
sion of GMMNs (Li, Swersky, and Zemel 2015) and MMD
nets (Dziugaite, Roy, and Ghahramani 2015).

Through an extensive set of experiments on high-
dimensional robotic imitation tasks with up to 376 state vari-
ables and 17 action variables (i.e. Humanoid), we showed
that GMMIL successfully imitates expert policies, even
when the expert trajectory was scarcely provided. The re-

turns obtained by the learned policy exhibited lower vari-
ances, hinting that using MMD makes the overall optimiza-
tion much more stable compared to the minimax optimiza-
tion in GAIL. In addition, we showed that we can naturally
reuse the trajectories by importance sampling, allowing for
further improving the sample efficiency.

As for the future work, we would like to address many as-
pects in which our formulation could be improved. First of
all, it is well known that the test power of MMD degrades
with the dimensionality of the data (Ramdas et al. 2015).
Although we did not suffer from this issue in our experi-
ments, this could be true with visual domains. Second, even

The reproducing kernel parameterization leads to an easier
optimization problem. However, it might not be advanta-
geous on more complicated problems.
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Experiments
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Summary

Minimax optimization is very difficult in general;

Heuristics leverage specific structures in machine learning
problems;

Normalization techniques improve the optimization landscape,
and stabilize the training of GAN;

The learning to optimize techniques have potentials to
outperform hand-designed algorithms;

The “large-batch” stochastic alternating gradient descent
attains sublinear convergence to some stationary solution for
nonconvex-concave stochastic minimax optimization
problems;

Lots of new problems, and open to everyone!
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