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Minimax Machine Learning

Conventional Empirical Risk Minimization: Given training data
Z1, ..., Zn, We minimize an empirical risk function,

1 n
i —E f(zi;0).
nblnnil (2:;0)
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Minimax Machine Learning

Conventional Empirical Risk Minimization: Given training data
Z1, ..., Zn, We minimize an empirical risk function,

1 n
min — Z f(zi;0).
6 n 4
=1
Minimax Formulation: We solve a minimax problem,

. BN
ngnmgx - ; f(zi;0,0).

More Flexible.
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Motivating Application: Robust Deep Learning

Neural Networks are vulnerable to adversarial examples
(Goodfellow et al. 2014, Madry et al. 2017).

Clean Sample Perturbation Adversarial Example
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Motivating Application: Robust Deep Learning

Neural Networks are vulnerable to adversarial examples
(Goodfellow et al. 2014, Madry et al. 2017).

Clean Sample

Adversarial Example

m Adversarial Perturbation: gnza%(ﬁ(f(a:i +9i50), i),
€
1 n
® Adversarial Training: min — » max¢(f(x; + 0:;0),v:),
6 n ] 6, €B
where §; € B denotes the imperceptible perturbation.
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Motivating Application: Image Generation

Brock et al. (2019)

All are fake!
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Motivating Application: Unsupervised Learning

Generative Adversarial Network: Goodfellow et al. (2014),
Arjovsky et al. (2017), Miyato et al. (2018), Brock et al. (2019)

Training set| Discriminator
Real
@ B

m
Generator Fake image
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Motivating Application: Unsupervised Learning

Generative Adversarial Network: Goodfellow et al. (2014),
Arjovsky et al. (2017), Miyato et al. (2018), Brock et al. (2019)

Training set| Discriminator
Real
Random @ 4[

%5@

Generator Fake image

mlnmaX—qu (Dyw(z4))) + Eznpg, [¢ (1 — A(Dw(x)))].

Dyy: Discriminator; Gy: Generator; ¢: log(j and A: Softmax.
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Motivating Application: Reinforcement Learning

AGENT ENVIRONMENT
-State sE€ S

- Take action a € A

- Get reward 7 L
-New state 5 € S
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Motivating Application: Reinforcement Learning

Minimax Formulation: Given M = (A, A, P, R,~), we solve
minmax L(m, V;v) = 2E, , o [v(s,a)(R(s,a) + vV (s')

oV v
- )\log(w(a]s))] - ES,a,s’VZ(S: a),
where s denotes the state, a denotes the action, and

m Policy: m: S — P(A),

m Value: V: S - R,

m Reward: R: S x A— R,

m Axillary Dual: v: S x A — R.

The policy 7 is parameterized as a neural network, where as v is
parameterized as a reproducing kernel function (Dai et al. 2018).
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Successes of Minimax Machine Learning

m Adversarial Robust Learning

m Unsupervised Learning

m Learning with Constraints

m Reinforcement Learning

m Domain Adaptation

m Generative Adversarial Imitation Learning
[ [

— lIdentify the fundamental hardness of minimax machine
learning and make optimization easier.
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Challenges



Minimax Optimization
General Formula:
minmax f(x,y),
min max f (2,9)

X Cc R Y cC Ry, f is some continuous function.
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Minimax Optimization

General Formula:

minmax f(x,y),
min max f(z, y)

X Cc R Y cC Ry, f is some continuous function.

Two Stage Optimization:
m Stage 1: g(z) = maxycy f(x,y),
m Stage 2: mingex g(z),

m Solve Stage 2 using gradient descent.
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Minimax Optimization

General Formula:

minmax f(x,y),
min ma f(z,y)

X Cc R Y cC Ry, f is some continuous function.

Two Stage Optimization:
m Stage 1: g(z) = maxycy f(x,y),
m Stage 2: mingex g(z),
m Solve Stage 2 using gradient descent.
Limitation: A global maximum of max,cy f(z,y) needs to be

obtained for evaluating Vg(x) (Envelope Theorem, Afriat et al.
(1971)).
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Existing Literature

Bilinear Saddle Point Problem:

min {p(ﬂv) + max{Az, y) — q(y)} :

X c R% and Y C R”: closed convex domain; A € RP*¢;
p(+) and ¢(-): convex functions satisfying certain assumptions.

Tuo Zhao — Towards Principled Methodologies and Efficient Algorithms for Minimax Machine Learning 10/38



VALSE Webinar, Jun. 26 2019

Existing Literature

Bilinear Saddle Point Problem:

min {p(w) + max{Az, y) — q(y)} :

X C R? and ) C RP: closed convex domain; A € RP*4;

p(+) and ¢(-): convex functions satisfying certain assumptions.

Nice Structure: Convex in z and Concave in y; Bilinear
interaction (can be slightly relaxed).

Tuo Zhao — Towards Principled Methodologies and Efficient Algorithms for Minimax Machine Learning 10/38



VALSE Webinar, Jun. 26 2019

Existing Literature

Bilinear Saddle Point Problem:

min {p(fv) + max{Az, y) — q(y)} :

X c R% and Y C R”: closed convex domain; A € RP*¢;
p(+) and ¢(-): convex functions satisfying certain assumptions.

Nice Structure: Convex in z and Concave in y; Bilinear
interaction (can be slightly relaxed).

Algorithms with Theoretical Guarantees:

Primal-Dual Algorihtm, Mirror-Prox Algorithm --- (Nemirovski
2005, Chen et al. 2014, Dang et al. 2015).
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Challenges: Nonconcavity of Inner Maximization

Recall Stage 2: mi = .
ecall Stage ggg{g(x) I;lea)%(f(x,y)}

Dl N ‘7‘:\' = |"’In‘|‘“||\\'|
R 7 p‘\}l \\I'L

A ESIEENERN fﬂﬂ'l||i‘[| |
SN 7 I RN /[“I““‘}\|i"““\}
\ 110 ”JUU\HMH’H..
[ * I ! * A U"‘I\lu‘l“ll‘l‘ll“l
- s ! "2 N (AR AR ML v

Tuo Zhao — Towards Principled Methodologies and Efficient Algorithms for Minimax Machine Learning 11/38



VALSE Webinar, Jun. 26 2019

Challenges: Nonconcavity of Inner Maximization

Recall Stage 2: mi = .
ecall Stage gg/g{g(x) I;lea)%(f(x,y)}

Why Fail to Converge?: y # argmax, f(x,y) may even lead to

(42, 29) <o

Limit Cycles

Noisy Gradient
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Minimization Minmax
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Our Proposed Solutions

State of the Art:

m Convex-concave: Well studied.

m Nonconvex-concave: Limitedly studied.
Reinforcement Learning: Dai et al. (2018); Constrained
OptimizationChen et al. (2019); - - -

m Beyond: No algorithm works well.

Our Solutions:

Improving Landscape and Learning to Optimize
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Generative Adversarial Networks'
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Generative Adversarial Networks

Highly Nonconvex-Nonconcave Minimax Problem:

=[]

Generator Fake image

Random
noise

Discriminator
NN
Real

FHUSS

nblnmaX—qu (Dyw(z4))) + Eznpg, [¢ (1 — A(Dw(x)))]-

Dyy: Discriminator; Gy: Generator; ¢, A: Properly chosen
functions (e.g., log(-) and Softmax).
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Generative Adversarial Networks

Instability Issue: Mode Collapse
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10k steps
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Stabilizing GAN Training

Better Algorithm: Better Landscape:
m Two Time-Scale Update m Gradient Penalty
m Functional Gradient m Weight Clipping
m Progressive Learning m Orthogonal

Regularization

Spectral Normalization
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Stabilizing GAN Training

Better Algorithm: Better Landscape:
m Two Time-Scale Update m Gradient Penalty
m Functional Gradient m Weight Clipping
m Progressive Learning m Orthogonal

Regularization

Spectral Normalization

Algorithm works only if the landscape is good enough.
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Better Optimization Landscape
Lipschitz Continuous Discriminator:
m An L-layer discriminator can be formulated as follows:

Dyy(x) =Wrop1(Wp—1---o1(Wiz) - --),

where W;'s are weight matrices and o;'s are activations.

m 1-Lipschitz condition:
Dy (z) ~ Dy(a')] < [ — /|

Inspired by Wasserstein GAN (Arjovsky et al., 2017)
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Better Optimization Landscape
Lipschitz Continuous Discriminator:

m An L-layer discriminator can be formulated as follows:
Dw(z) = Wror_y(Wp_1 - o1 (W) ---),

where W;'s are weight matrices and o;'s are activations.

m 1-Lipschitz condition:
Dy (z) ~ Dy(a')] < [ — /|

Inspired by Wasserstein GAN (Arjovsky et al., 2017)

Empirically works well, but why?

Tuo Zhao — Towards Principled Methodologies and Efficient Algorithms for Minimax Machine Learning 16/38



Control Weight Matrix Scaling

Scaling Issue: Consider a simple 2-layer discriminator with ReLU
activation (o(-) = max(-,0)):

Dw(x) = WQU(W1$).
Since the RelLU activation is homogeneous, we can rescale the
weight matrices by a factor A > 0 as

W, = A-Wl Wy = WQ/)\.
Although the neural network model remains the same, the
optimization landscape becomes worse.
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Control Weight Matrix Scaling

Scaling Issue: Consider a simple 2-layer discriminator with ReLU
activation (o(-) = max(-,0)):

Dw(x) = WQU(W1$).

Since the RelLU activation is homogeneous, we can rescale the
weight matrices by a factor A > 0 as

W, = A-Wl Wy = WQ/)\.
Although the neural network model remains the same, the
optimization landscape becomes worse.

Orthogonal Regularization:

T JR—
i £(W,1W2) +)\(HW1 Wy — IH +HW2 W IH )
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lllustrations of Landscape

min .F(.’L',y) = (1 - $y)2,
T,y
min Fy(z,y) = (1 — xy)2 + )\(x2 — y2)2.
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Also Improves Generalization

Theorem (Informal, )

Under some technical assumptions and assume

m |[W;|l, < Bw, fori € [L] and ||z, < By for k € [n].

m Generator and discriminator are well trained, i.e.,
dF ¢(Hn, V) — inf drg(fin, v) <,
v€EDg

where dr 4(-,-) is the neural distance with probability at
least 1 — 9, we have

d w) — inf drg(p,v) <O
7ol vn) — f drg(u,v) < Tn

A <B9€ Hf:l BW’L\/d2_L>
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From Lipschitz Continuity to Generalization

Importance of Spectrum Control:

d w) — inf drg(p,v) <O
Folpvn) = inf drs(uv) Tn

A (BI ]._.[5:1 BWZ\/dZ_L>

. . . ~ d2L
1-Lipschitz = polynomial bound O ("T)-

Controling the product of spectral norms avoids bad
landscape and benefits the generalization of GANSs.
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Better then Orthogonal Regularization

Spectral Normalization (SN, Miyato et al. 2018):

—— SN (Miyato et al. 2018)
SN (Alternative)
—— Orthgonal Regularization

25000 50000 75000 100000 125000 150000 175000 200000

Inception Score on STL-10

Miyato et al. (2018) > Orth. Reg. > SN (Alternative) ]
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Better than Spectral Normalization

Singular Value Decay: Decay patterns of sorted singular values
of weight matrices.

Orthogonal Reg. Miyato et al. 2018 SN (Alt.)  Jiang et al. (2019)
No Decay Slow Decay Fast Decay Slower Decay
IS: 8.77 IS: 8.83 IS: 8.69 IS: 9.25

Observation: Slow singular value decay is better than both
no decay and fast decay.
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Experiments (CIFAR10 and STL-10)

== SN-GAN 74
40 === SN + D-optimal Reg 72
70
3
o8
o6
0
oo
2 62 e SN-GAN
60 === SN + D-optimal Reg
20300 3000 40000 50000 60300 70500 80000 30800 100600 20300 30300 40600 50900 60300 70300 80500 30600 100600
CIFAR: FID CIFAR: Inception Score
—— SN-GAN ) B oA
L
120 ~— SN + D-optimal Reg T

o

o S
-

s —— SN-GAN
\/\,—\w\ ~— SN + D-optimal Reg

25000 50000 75000 100000 125000 150000 175000 200000 25000 50000 75000 100000 125000 150000 175000 200000

STL: FID STL: Inception Score
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Experiments (ImageNet)

Cardoon Altar Jack-o'-lantern
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Adversarial Robust Learning'
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Adversarial Training

Clean Sample Perturbation Adversarial Example
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Adversarial Training

Clean Sample Perturbation Adversarial Example

=

Highly Nonconvex-Nonconcave Minimax Problem:
n

1 : .
Hlell’l ﬁ ;(I(ilggg(f(l‘z + 043 9)7 yl)'

x;: feature; y;: label; §;: perturbation;

f(-;0): neural network; ¢: loss function; B: constraint;
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Adversarial Training

n

o1
II%IH E ;(glgge(f(mz + 05 9)7 yz)‘
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Adversarial Training

1
n%m E ;(glgge(f(mz + 527 9)»%)-

Two Stage Optimization:
® Inner Maximization Problem (Attack)

m Outer Minimization Problem (Defense)
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Adversarial Training

min 3 s (7 +:0).00)
Two Stage Optimization:
® Inner Maximization Problem (Attack)
m Outer Minimization Problem (Defense)
Popular Approaches for Attack:
m Fast Gradient Sign Method (Goodfellow et al. (2014))
m Projected Gradient Method (Kurakin et al. (2016))

m Carlini-Wagner Attack (Paszke et al. (2017))
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Learn to Learn/Optimize (L2L)

High Level ldea:
m Cast the optimizer as a learning model;
m Allow the model to learn to exploit structure automatically.

Implementation: Parameterize optimizer as a neural network,
and learn its parameters (Andrychowicz et al. 2016).

Initial
Solution
Zo

Output
Solution

xr

Algorithms
(e.g., Gradient
Descent)

V.S.

Gradient [z
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Learn to Learn/Optimize (L2L)

Advantages:

m Attacker Network is powerful in representation.
— Yield strong and flexible perturbations.

m Shared attacker model.

= Learn common structures across all perturbations.

m Learning through overparametrization.

—> Ease the training process.

m Reduce search space.

= Computational efficiency
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Learn to Learn/Optimize (L2L)

New Formulation:
. R
min max Z [0(f (zi + g(A(zi, yi, 0); 0); 6), wi)],

n
¢ i=1
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Learn to Learn/Optimize (L2L)

New Formulation:
n

. 1
min max Z [0(f (zi + g(A(zi, yi, 0); 0); 6), wi)],
i=1
Notations:
m f(-;0): Classifier;
® g(-;¢): Attacker/Optimizer;

m A(z;,y,0): Input of Optimizer g (Interact g with f via A).

Tuo Zhao — Towards Principled Methodologies and Efficient Algorithms for Minimax Machine Learning 29/38



Learn to Attack:

Grad L2L: Motivated by gradient ascent with
A(wi, yi, 0) = [, Vol (f (2450), vi)]-

Backpropagation . .
Original Input radlent w.rt. Input

Concatenate Attacker g
Input and Gradient

Classifier h
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Learn to Attack:

Grad L2L: Motivated by gradient ascent with
A(wi, yi, 0) = [, Vol (f (2450), vi)]-

Clean Loss

Backpropagation . ._
s Adv Loss

Classifier h

Original Input ‘ Gradient w.r.t. Input J

B "" — | "—’@_’
Y .

L4 /
Concatenate Attacker g Noise Perturbed Inputs
Input and Gradient

Multi-Step Grad L2L: Recursively apply Grad L2L (RNN).
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Learn to Attack:

Grad L2L: Motivated by gradient ascent with
A(wi, yi, 0) = [, Vol (f (2450), vi)]-

Clean Loss

Backpropagation . ._
s Adv Loss

Classifier h

Original Input ‘ Gradient w.r.t. Input J

B "" — | "—’@_’
Y .

L4 /
Concatenate Attacker g Noise Perturbed Inputs
Input and Gradient

Multi-Step Grad L2L: Recursively apply Grad L2L (RNN).
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Experiments

Accuracy on Clean Samples and PGM adversaries

Data = CIFAR-10 Data = CIFAR-100

eval
. clean
I = pgm

Plain FGSM Net PGM Net Grad L2L 2-Step L2L Plain  FGSM Net PGM Net Grad L2L 2-Step L2L
Model Model

Accuracy
8 & 8 8

Per Iteration Computational Cost

Training Time/s
2 8 8 &
8 8 8 8

o

Plain  FGSM Net PGM Net Grad L2L 2-Step L2L
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Reinforcement Learning'



Smoothed Bellman Error Minimization

Minimax Formulation: Given M = (A, A, P, R,~), we solve
minmax L(7, V;v) = 2B, ¢ [v(s,a)(R(s,a) + vV (')

VvV v
— Mog(m(als))] = Esq,5v°(s,a),

where s denotes the state, a denotes the action, and
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Smoothed Bellman Error Minimization

Minimax Formulation: Given M = (A, A, P, R,~), we solve
minmax L(7, V;v) = 2B, ¢ [v(s,a)(R(s,a) + vV (')

VvV v
— Nog(r(als))] — Eqayv2(s, a),
where s denotes the state, a denotes the action, and
m Policy: 7: & — P(A),
m Value: V: § — R,
m Reward: R: S x A— R,
m Axillary Dual: v: S x A — R.
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Smoothed Bellman Error Minimization

Minimax Formulation: Given M = (A, A, P, R,~), we solve
minmax L(7, V;v) = 2B, ¢ [v(s,a)(R(s,a) + vV (')

VvV v
— Nog(r(als))] — Eqayv2(s, a),
where s denotes the state, a denotes the action, and
m Policy: 7: & — P(A),
m Value: V: § — R,
m Reward: R: S x A— R,
m Axillary Dual: v: S x A — R.

The policy 7 and v are parameterized as a neural network and
a reproducing kernel function, respectively (Dai et al. 2018).
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Parameterization of V, m and v

State Approximation: There exists a feature vector 9(s)
associated with every state s € S.

Neural Networks for 7 and V:
m(ajls) = fj(¥(s);©) and V(s) = h(¥(s),A),
where f; is a neural network with parameter © and
Reproducing Kernel Functions for v:
v(ajls) = g;(¥(s); ),

where g; is a reproducing kernel function with parameter ().
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Benefit of Reproducing Kernel Parameterization

Alternative Minimax Formulation:

minmax £(A,0,Q) — R(Q)
A0 Qe

where R() is a strongly concave regularizer.
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Benefit of Reproducing Kernel Parameterization

Alternative Minimax Formulation:

minmax £(A,0,Q) — R(Q)
A0 Qe

where R() is a strongly concave regularizer.

Stochastic Alternating Gradient Algorithm:
QD = 10 (QW 4 oV L(A®, 01 1)),
AUD = AW _ )\ TAL(AD, 00 lt+D),
YD) — @) _ anVE'(A(t), o® o+l

where 1y, 1A and nq are properly chosen step sizes, and Land L'
are unbiased independent stochastic approximations of L.
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Sublinear Convergence

Theorem (Informal,

|

Given a pre-specified error € > 0, we assume that L(A,©,) is
sufficiently smooth in A, O, € C, and strongly concave in ().
Given properly chosen step sizes and a batch size of O(1/¢), we
need at most

T = O(1/e)

iterations such that

s Ve 60,06+ vocat o ot
+E[|0® - Te(2® + vaE(a®,00,00))|" < e
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Experiments

Reproducing Kernel v.s. Neural Networks for v.

Reacher HalfCheetah Hopper
1 10 10
08 .
0 06
06
o
- 02 04
00 02 )
B -0.2 0.0
7 % W e aw T w0 ww w0 D
Walker Ant Humanoid
10 10
or
0s 08
030
06 s 06
01 o 0t
02 o 02
m 00 00
D T 0 2 w0 o T e a0 se

Number of iterations
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.
Experiments
Reproducing Kernel v.s. Neural Networks for v.
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The reproducing kernel parameterization leads to an easier
optimization problem. However, it might not be advanta-
geous on more complicated problems.
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Summary

m Minimax optimization is very difficult in general;

m Heuristics leverage specific structures in machine learning
problems;

m Normalization techniques improve the optimization landscape,
and stabilize the training of GAN;

m The learning to optimize techniques have potentials to
outperform hand-designed algorithms;

m The “large-batch” stochastic alternating gradient descent
attains sublinear convergence to some stationary solution for
nonconvex-concave stochastic minimax optimization
problems;

m Lots of new problems, and open to everyone!
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