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Today’s Talk

« Multi-Target Tracking with bilinear LSTM

« Novel LSTM model coming from studies on tracking

« Understanding more about CNNs
« Generalization Theory based on Gaussian Complexity and Redesigns
« XNN: Explaining CNN to human



COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Today’s Talk

 Multi-Target Tracking with bilinear LSTM

« Novel LSTM model coming from studies on tracking

« Understanding more about CNNs
« Generalization Theory based on Gaussian Complexity and Redesigns
« XNN: Explaining CNN to human



COLLEGE OF ENGINEERING . Electrical Engineering & Computer Science

Multi-Target Tracking by Detection
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Link person detections in each frame into tracks

Search space reduced by using a person detector
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Multi-Target Tracking by Detection

Link person detections in each frame into tracks

Search space reduced by using a person detector
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Multi-Target Tracking Illustration
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The Essence of Tracking

Appearance Cues
« People (targets) look different, they wear different clothes

Motion Cues
« People (targets) move in a smooth/piecewise-smooth manner
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Appearance Cues

Identity (ID) Switch!
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Multiple Appearances + Motion

Successful tracking algorithms combine
appearance and motion cues

Each object can have many appearances,
this need to be handled too
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Goal: End-to-End Training

» Interestingly, tracking is rarely trained end-to-end
« There is often an appearance model that is updated online
« e.g. MHT-DAM [Kim et al. 2015], STAM [Chu et al. 2017]

 And then a motion model that is separately updated
« Most likely, a heuristic motion model (linear, constant velocity)
« Or Kalman filter (e.g. [Kim et al. 2015])

« And then post-processing

 There should be a few benefits for end-to-end training
« Using more complex nonlinear motion models
« Have the motion and appearance models better work together
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Previous attempts on using a recurrent model

« A standard approach to train on a video sequence would be
a convolution + recurrent model

« Tried a couple of times (Milan et al. 2017, Sadeghian et al. 2017) with
some success

Belong/Not Belong
to the Track

T

T 1 ]

.,
-

CNN
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Interesting Phenomenon on a Recurrent Model

< 30 -
H
o /
= 20 === MOT Validation Set |

80! 2 s 4 > 6 7 8 9 10
<
S 750 -
= Stanford Drone Dataset

70 | | | | | | | ]

1 2 3 4 5 6 7 8 9 10
Sequence Length (frame)
(b)

Using longer sequences to train the
LSTM does not seem to bring any benefit!

(image cf. Sadeghian et al. 2017) 11
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Reflect about this Longer Training Sequence issue:

Appearance Part Motion Part

Multiple Appearances! Single Motion Trajectory!

Longer sequence in training Longer sequence may not
should be beneficial be beneficial

12
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Longer Training Sequence

Appearance Part
Hypothesis:

LSTM in multi-target
tracking may not be
modeling multiple
appearances properly

Multiple Appearances!

Longer sequence in training
should be beneficial

13
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The Dilemma of the LSTM Memory

Why is there not an option of:
put the memory aside?

THAT IS THE QUESTION

14
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In the Quest for a New LSTM

« We check a non-deep appearance modeling approach

« Recursive least squares

« Used in several work, e.g. DCF/KCF (Henriques et al. 2012), SPT (Li et al.
2013), MHT-DAM (Kim et al. 2015)

« As well as being a classic tracking approach in robotics
« Global optimal online appearance modeling framework
« Appearance model is a classifier/regressor

« Capable of modeling multiple appearances

15
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How does it work

« Tracker is a regressor
« Appearance model: classifies any new appearance to object/not object

we = argmin ||w ' xo. — yoe||* + A[[w]|*

\ (Soft) Labels

£g. d ind
Appearance Features e.g. Jaccard index

(e.g. CNN) from
Positive and Negative
Examples

Negative (label = 0)

Positive (label = 1)

16
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Testing and recursive training

 Test model on all detections:

Wi

17
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Testing and recursive training

 Decide which one is matched to the track

18
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Testing and recursive training

« Generate training examples for time t+1
« Solve for wyyq

Werr = argmin [|w ' Xo;er1 = Yosewa|[* + A Iw]|*

19
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(Some of the) good stuff with least squares

Solution of w:

w=X"X+AD"X"y=(H+ D¢

H), = X/ (1:k— 1)X (1:k—1) + X(R)X(k) 1) Each frame is separable!
xT 2) Inversion does not depend
Cr = A2@k-1)Y(k-1) + X(k)Y(k) on number of targets (tracks)

 In DCF/KCF (Henriquez et al. 2012, 2014), more
computational savings with Fourier domain transformations

 In MHT-DAM (Kim et al. 2015), this is used to learn a
different appearance model for each branch in an MHT tree

20
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The “"Recurrent Model” Version of Least Squares

Problem: Storing d X d matrix H in RNN
is too memory-consuming

_ Hy =) H, == H, === H;,
Recursive
LeastSquares ~ Co === = ¢ = Gy

21
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Low-rank Approximation

« Go back to the solution formula

w=X"X+AD"X"y=(H+ D) 1c

r r

wix ~ z c"h;h!x = ,ulhT

t=1 Feature input
(e.g. CNN)

Track-specitfic Memory
layer

The difference between this and a normal RNN/LSTM update?

22
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Bilinear LSTM

LI
x

Matrix-vector multiplication
Reshape "
S 0

Trackuptot —1 Detection at ¢

23
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Bilinear LSTM Model Study

 Tried 3 models for
 Appearance LSTM
e Motion LSTM

: |
Matrix-vector multiplication Coneatenation
8
resape 1 I t ] S
1 1 )
S S
1 1 1 1 ')
1 L} 1 1} 1
Trackuptot—1 Detection at t Trackuptot—1 Detection at t Trackuptot
(a) (b) (c)
- Concatenate
Bilinear LSTM Normal LSTM

Memory and Input

24
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Experiment Details

MOT-17 dataset (without 17-09 and 17-10) + ETH + PETS +
TUD + TownCentre + KITTI16 + KITTI19 as training

MOT-17-09, MOT-17-10 as validation
Faster R-CNN detector with ResNet 50 head
Public Detections

Detailed model architecture for appearance:

Soft-max Soft-max Soft-max
Matrix-vector Multiplication-relu 8 FC-relu 512 FC-relu 512
Reshape 8 x 256 || Reshape 256 x 1 Concatenation 2048 4 256 L‘S"l'.\[ 20:“?
LSTM 2048 LSTM 2048 ;t]\(l:')“ _:HL
FC-relu 256 || FC-relu 256 | | FC-relu 256 || FC-relu 256 | | mputatt 128 x 64 x 3
ResNet-50 2048 |[ ResNet50 2048 | | ResNet-50 2048 || ResNet50 2048
Input at t —1 128 x 64 x 3 || Input at t 128 x 64 x 3 Input at t —1 128 x 64 x 3 || Input at t 128 x 64 x 3

(a) (b) (c)

25
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Comparison between different appearance LSTMs

« Bilinear LSTM significantly better than other LSTM variants

« ID switches almost halved

« Longer training sequence make a difference
« The best sequence length is now between 20-40 frames

Nmax MOTA IDF1 IDS

LSTM MOTA IDF1 IDS State dim. MOTA IDF1 IDS 10 5196 5436 271
Bilinear 52.33 59.07 233 512 52.14 56.66 283 20  52.27 58.38 228
Baselinel 50.43 51.28 412 1024 52.36 55.85 222 40  52.33 59.07 233
Baseline2 50.97 51.49 462 2048 52.33 59.07 233 80  52.32 57.21 239

160 52.41 55.19 222

Table 4: Ablation Study for Appearance Gating Networks. Baselinel and Baseline2
are the networks shown in Table 2 (b) and (c) resepectively. (Left) State dim. =
2048, Nmax = 40 (Middle) LSTM: Bilinear, Nmax = 40, (Right) LSTM: Bilinear,
State dim. = 2048

26
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Comparison between different motion LSTMs

« Bilinear LSTM does not work as well as regular LSTM in

motion LSTM
« Maybe the single modality of motion LSTM makes regular LSTM more
suitable
LSTM MOTA IDF1 IDS State dim. MOTA IDF1 IDS Mo SICTR TBEL. TS
Bilinear 39.68 41.22 226 64 40.14 44.11 106 4218 23:461 ii?? ?82
Baselinel 38.90 19.38 449 128 40.16 44.26 97 30 40'15 45'29 104
Baseline2 40.14 44.11 106 256 40.15 44.48 103 ‘ |

160 40.20 45.15 91

Table 2: Ablation Study for Motion Gating Networks (Left) State dim. = 64, Nyax =
40 (Middle) LSTM:Baseline2, Nyax = 40, (Right) LSTM:Baseline2, State dim. = 64

27
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Final MOT-17 Result Videos

MHT-DAM (Kim et al. 2015)

28
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Final MOT-17 Result Videos

MHT-bLSTM

C. Kim, FL, J. Rehg. ECCV 2018 29
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Final MOT Results

« Showing all the top non-anonymous results on MOT-17 (as
of 7/31/18), sorted by IDF1:

Tragker Avg.Rank MOTA  HIREX MI Mk ER. EN IR.SW: Frag Hz  Detector
eHAF1T 13.5 518 12 547 234%  379% 33212 236,772 1,834 g15) 2,739 (472 0.7 Public
2' [Z] TCEWT-02141-2018
iCC 14.6 512 1145 545 209%  37.0% 250937 247,822 1,802 . 2,984 (522 18 Public

M. Heuper, 5. Tang, ¥. Zhongjie, B. Andres, T. Brox, B. Schiele. A multi-cut formulation for joint segmentation and fracking of multiple objects. In arXiv preprint arXiv:1607.06317, 2018,
15.8 509 siie 527 175%  357% 24069 250768 2,474 (145, 5,317 (es.7) 183 Public

G. Long; A Haizhou, 7. Ziie, 8. Chong. Real-ime Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-dentification. In ICME. 2013,

MHT.bLSTM 205 475 s128 519 182%  417% 25981 268,042 2,069 @304) 3,124 o5 1.9

C. Kim; - L, J. Rehg: Multi-object Tracking with Meura| Gating Using Bilinear LSTM. In ECCW, 2018

EDMT17 16.4 500 1120 513 216%  363% 32,279 247,297 2,264 oz 3,260 (ss.0) 06 Public
12 D J. Chen, H. Sheng, Y. Zhang, Z. Xiong. Enhancing Detection Mode! for Multiple Hypothesis Tracking. In BMTT-PETS CVPRw, 2017.
PHD.GSDL17 22.8 480 w128 496 171%  356% 23199 2650954 3,998 (s 5) 8,886 (1ea 1) 67 Public

BeSt 1? G EI Z Fu, P. Feng, F. Angelini, J. Chambers, 2. Hagvl. Paricle PHD Filter based Muftiple Hurnan Tracidng using Online Group-Structured Diclionary Leaming. |n IEEE Access, 2018.

1n 7 16.4 51.3 134 476  214% 35.2% 24101 247 921 2,648 urz 4279 e 0.2
MOT pa il R. Henschel, L. Leal-Taixé, D. Cremers, B. Rosenhahn. Fusion of Head and Full-Sody Detectors for Multi-Object Tracking. In Trajnet CYPRW, 2018.
MHT..DAM 18.0 50.7 s1a7 472 208%  369% 22875 252,889 2,314 s1g) 2,865 s19) 0.9 Public

2017 2.0

C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.
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Conclusion: Bilinear LSTM

 We proposed Bilinear LSTM as an approach to learn long-
term appearance model in tracking

« Experiments show that it significantly outperforms regular
LSTM, especially in terms of identity switches

« Bilinear LSTM seems capable of learning appearance model with multiple
different appearances, where traditional LSTM struggles

 We hope that this methodology can be potentially useful in
other scenarios beyond tracking

31
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Today’s Talk

« Multi-Target Tracking with bilinear LSTM

« Novel LSTM model coming from studies on tracking

« Understanding more about CNNs
« Generalization Theory based on Gaussian Complexity and Redesigns
« XNN: Explaining CNN to human

32
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Generalization Theory of CNN

« Have we ever questioned why are CNN filters always
squares?

3x3 5x5 7X7

33
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Why does a Sobel CNN filter generalize?

Sobel filter

40 | +1

2|0 |+2

4] 0| +1
Gx

Convolution

+1 +2 [ +1 H11 | H12 | H13
Fi1 | F12 [ F13 | F14 | F15 | F1s
H21 | H22 | H23
0 0 0 F21 | F22 | F23 | F24 | F25 | F26 G22 | G23 | G24 | G25
H31 | H32 | H33
F31 | F32 | F33 | F34 | F35 | F3s G32 | G33 | G34 | G35
_— =
-1 -2 4] Fa1 | F42 | F43 | F44 | F45 | F46 G42 | G43 | G44 | G45
Fs1 | F52 | F53 | F54 | Fa5 | F56 G52 | Ga3 | Gs4 | G55
Gy
F&1 | F62 | F63 | Fe4 | Fe5 | F&6

Gij = XHyFitk j+1

Convolution

I * Gx
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Intuition of Generalization Capability

« In an image most of the time there is no boundary
« A boundary is a pattern

« A pattern is generalizable if it occurs rarely and most of the time there is
no pattern

No boundary

35
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Theory of Generalization Capability

Theorem: For a simple 2-layer Network:
F={x—oXviow;*x): [vl<1llwl]<1}

For any x4, ..., xy € RY, the Gaussian complexity (Gy) of F
satisfies

cB(In d)/2

max VIV 1%:G) — %:G) 112

—jIeEN

Gy(F) <

where j —j' € NV means j and j' fall within the same filter

In simpler terms: in order to generalize, the CNN filter needs to
choose a neighborhood in which the input are highly correlated
with each other.

X. Li, FL, X. Fern, R. Raich. ICLR 2017 34
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Cross-Correlation of Natural Images

3x3

is the best!

- -3 =0 -1 @ ] 2 = &0 5o

Each pixel represents the
cross-correlation between
(x0,¥0) and (xg + AX,yo + Ay)

Averaged over all pixels on PASCAL VOC
37
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What's the use of this?

« Consider a domain where the cross-correlation pattern is
different:

300Hz

150Hz

2s 4s 6s 8s
time

The CNN filter shape should be different too!

38
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An Algorithm to Decide CNN Filter Shapes

« We proposed a LASSO algorithm that recursively selects the
highest-correlated locations based on the correlation image
« Which can learn filter shapes from unsupervised data

We learned CNN should have

o

e.g. for this pattern filters of these shapes

Layers
1-4:

—_ + I B O I €
5-8:

39



COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Experiments

« Recordings of hummingbird wingbeats and bird songs
« Spectrogram data
* 434 wingbeats recordings, 122 birdsong recordings
« Cross-validation accuracy is reported

Bird Wingbeats Birdsong
Spectrogram Spectrogram

)
>
Q o
O (@]
< <
S s
w ©
e = Customized Filter %
@ —t
> 3"3 Filter > b == Customized Filter
-5*5 Filter | === 3*3 Filter
. ’ _5*5 Filter with L1 [T | '5*5 Filter with L1
l Regularization . Regularization
0.4 - . . " A L
0 20 40 60 80 0 50 100 150
Number of Epochs Number of Epochs
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Explainable Deep Learning

e How can human
understand a
very deep network?

(//i\\\m/A\\‘

V
\ l
‘\Vj, &%{, c/" o

‘\\‘ﬁblll “ \' \' l"
bt wa

Very complex
Deep Network

/ XL
‘ ’ V!« .)"‘

10-100M ,§ \\6,\;\‘,.’.2,,%*,\,3. ‘:'1,""';':
How can human trust parameters »{\{v:. Y Y ‘:v%

a deep network? ’\\\!’"’"“‘W/’

Esp. in crucial decision making scenarios

In an airplane, deep learning makes decision: Force land right now!

In autonomous driving, deep learning makes decision: steer left to hit the
highway separator!

Need to generate mental model of deep learning that
human can understand!
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Explaining Deep Learning Predictions

Idea: Use the Deep Learning in Human Brain

Crash the Plane

71T N

Reason A  Reason B Reason C

Crash the Plane

\1/

Deep

CNN

{Aha! | think reason A means this...J

42
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Explaining Deep Learning Predictions

“A is something because of B, C, and D”.

B, C, and D need to be
(1) concise and
(2) high-level concepts.

43
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XNN (Explanation Neural Network)

Features of

Explanation Module Prediction Module

Prediction

High-dim
(e.g. 1000)

Explanation

Space
= Explanation Module
Dimensionality s
H ow-aim
Reduction gy

Explanation features need to be:
1) Faithful to the DNN it is explaining

2) Do not include irrelevant concepts
3) Each feature represents a different concept

44
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XNN (Explanation Neural Network)

Faithfulness: attempts to be
4 | faithful to the original DNN

B TE(ZD: 9) — 4@
;I,lé!,I\l,M Z:: Hv E(ZY";0)—1q
B = i . ,,, 112
+o= Y log(l+q- 12> |67 (B(Z;0):8) —2z0||")
% k=1 i=1
1 a ETE; \2 \
+n
n(n —1) lz_; %: (||El I ||) Sparse reconstruction:
v attempts to selectively
Orthogonality: reconstruct

attempts to make
features orthogonal to
each other

some dimensions of the
features in a deep
network

45
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Visualization

We can use heatmap tools to visualize the explanation
features (x-features)

Heatmap tool:

Input chair glass boy woman man couple father

They used to be used on classifications
Now used on explanation features

46
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XNN Explaining Bird Classifications

Laysan
Albatross |28
Excitation BP |[ES 0

10.8059 17.6273

X-feature
#1
(eyes)

X-feature
#2
(wings)

Crested
Auklet
Excitation
BP

29.4819 30.4788 30.1822 26.3147 7 33.5860

31.4796

X-feature '
#1
(beak)

X-feature
#2
(body)

22.6177

Zhongang Qi, Saeed Khorram, FL.
Arxiv: 1709.05360 47
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Quantatitive Evaluations

Important for explanation

We evaluate 1) Faithfulness; 2) Orthogonality; 3) Locality (log of
number of parts covered by each x-feature)

Electrical Engineering & Computer Science

Locality evaluated because bird classification should be based on parts

Method SRAE NN| SAE| Lasso| CAE Z/|ExcitationBP
Fcq |Training| 0.0812] 0.0696| 0.0972| 3.5785| 4.1513 — —
Testing| 0.1659] 0.1304| 0.1981 3.7928| 4.0021 — —

F.s |Training|99.99%](100.0%|99.99%|73.14%65.34% — —
Testing[99.99%(100.0%(99.98%|71.53%(69.28% — —

O1 | Positive| 0.6554| 0.9765| 0.8794| 1.2052| 0.6301 — —
O2 | Positive| 2.4312| 4.9112| 3.5057| 3.9851| 2.3884 — —
Locality| Positive| 1.9713| 2.4360| 2.1997| 2.1082| 2.1227(1.9685 2.5659
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Places-365 Dataset

Explain why CNN classify this room as a particular type

| L T
Kitchen : ' -
Excitation BP

X-feature
#1
(cupboards &
kitchenware)

X-feature
#2
(lamps)

Bedroom
Excitation BP

X-feature

X-feature
#2
(other
rectangles)

49
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Places-365 Quantitative Evaluations

Method SRAE NN| SAE| Lasso| CAE|ExcitationBP
Fyeq |Training| 0.5527] 0.3346| 1.4768| 4.0726| 4.3579 —
Testing| 1.0260| 0.8736| 1.5505| 4.3366| 4.6553 —

F.s |Training|97.22%|(97.17%{94.59%)90.19%90.11% -
Testing|94.79%(94.86%93.29%|88.55% |88.42% —

O1 | Positive| 0.2252| 0.3472| 0.4578| 0.4729| 0.2741 —
O2 | Positive| 0.5617| 0.8852| 1.0799| 0.9194| 0.5945 —
Locality| Positive| 2.7208| 2.7756| 2.7819| 2.7282| 2.7627 2.7591

50
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Conclusion about the second part

We proposed 2 approaches that provided more
understanding into CNN

« Gaussian complexity-based generalization theory explains
why are CNN filters square-shaped

« Also provides an approach to learn filter shape if the data is not natural
image

« XNN provides explanations of individual CNN predictions

« In the form of high-level heatmaps human can then read and reason
about

« Many future work ahead

51



Thank You!

Fuxin Li: http://web.engr.oregonstate.edu/~lif
Email: lif@oregonstate.edu

2077 Kelley Engineering Center,
Oregon State University
Corvallis OR 97331

I would like to thank my collaborators who contributed to the work in these slides:

Georgia Tech:
Chanho Kim, James M. Rehg

Oregon State University:
Xingyi Li, Zhongang Qi, Saeed Khorram, Xiaoli Fern, Weng-Keen Wong
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