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Today’s Talk

• Multi-Target Tracking with bilinear LSTM
• Novel LSTM model coming from studies on tracking

• Understanding more about CNNs
• Generalization Theory based on Gaussian Complexity and Redesigns
• XNN: Explaining CNN to human
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Multi-Target Tracking by Detection
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Frame 1 Frame 2

Frame 3 Frame 4

Link person detections in each frame into tracks

Search space reduced by using a person detector



Link person detections in each frame into tracks

Search space reduced by using a person detector

Multi-Target Tracking by Detection
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Multi-Target Tracking Illustration
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The Essence of Tracking

Appearance Cues
• People (targets) look different, they wear different clothes

Motion Cues
• People (targets) move in a smooth/piecewise-smooth manner
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Appearance Cues
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Identity (ID) Switch!



Multiple Appearances + Motion

Successful tracking algorithms combine 
appearance and motion cues

Each object can have many appearances, 
this need to be handled too
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Goal: End-to-End Training

• Interestingly, tracking is rarely trained end-to-end
• There is often an appearance model that is updated online

• e.g. MHT-DAM [Kim et al. 2015], STAM [Chu et al. 2017]

• And then a motion model that is separately updated
• Most likely, a heuristic motion model (linear, constant velocity)
• Or Kalman filter (e.g. [Kim et al. 2015])

• And then post-processing

• There should be a few benefits for end-to-end training
• Using more complex nonlinear motion models
• Have the motion and appearance models better work together
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Previous attempts on using a recurrent model

• A standard approach to train on a video sequence would be 
a convolution + recurrent model
• Tried a couple of times (Milan et al. 2017, Sadeghian et al. 2017) with 

some success
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LSTM

CNN

Belong/Not Belong
to the Track

t=1 t=T t=T+1t=2 …

…



Interesting Phenomenon on a Recurrent Model

11

Using longer sequences to train the 
LSTM does not seem to bring any benefit!

(image cf. Sadeghian et al. 2017)



Reflect about this Longer Training Sequence issue:

12

Longer sequence in training
should be beneficial

Multiple Appearances!

Appearance Part Motion Part

Single Motion Trajectory!

Longer sequence may not
be beneficial



Longer Training Sequence
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Longer sequence in training
should be beneficial

Multiple Appearances!

Appearance Part
Hypothesis:

LSTM in multi-target 
tracking may not be 
modeling multiple 

appearances properly



The Dilemma of the LSTM Memory
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LSTM

Why is there not an option of:
put the memory aside?



In the Quest for a New LSTM

• We check a non-deep appearance modeling approach

• Recursive least squares
• Used in several work, e.g. DCF/KCF (Henriques et al. 2012), SPT (Li et al. 

2013), MHT-DAM (Kim et al. 2015)

• As well as being a classic tracking approach in robotics

• Global optimal online appearance modeling framework

• Appearance model is a classifier/regressor

• Capable of modeling multiple appearances
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How does it work

• Tracker is a regressor
• Appearance model: classifies any new appearance to object/not object
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Appearance Features 
(e.g. CNN) from 

Positive and Negative 
Examples

(Soft) Labels 
e.g. Jaccard index

Positive (label = 1)

Negative (label = 0)



Testing and recursive training

• Test model on all detections:
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Testing and recursive training

• Decide which one is matched to the track
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Testing and recursive training

• Generate training examples for time t+1
• Solve for ௧ାଵ
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Negative
Negative

Positive

Negative



(Some of the) good stuff with least squares

• In DCF/KCF (Henriquez et al. 2012, 2014), more 
computational savings with Fourier domain transformations

• In MHT-DAM (Kim et al. 2015), this is used to learn a 
different appearance model for each branch in an MHT tree

20

1) Each frame is separable!
2) Inversion does not depend 
on number of targets (tracks)

Solution of w: 



The “Recurrent Model” Version of Least Squares

21

RNN

Recursive
Least Squares

଴ ଵ ௧ ௧ାଵ…

଴ ଵ ௧ ௧ାଵ…

଴ ଵ

଴ ଵ

௧

௧

௧ାଵ

௧ାଵ

Problem: Storing matrix in RNN 
is too memory-consuming 



Low-rank Approximation

• Go back to the solution formula
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Memory

Feature input 
(e.g. CNN)

The difference between this and a normal RNN/LSTM update?

Track-specific
layer



Bilinear LSTM
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Bilinear LSTM Model Study

• Tried 3 models for
• Appearance LSTM
• Motion LSTM
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Bilinear LSTM Concatenate 
Memory and Input

Normal LSTM



Experiment Details

• MOT-17 dataset (without 17-09 and 17-10) + ETH + PETS + 
TUD + TownCentre + KITTI16 + KITTI19 as training

• MOT-17-09, MOT-17-10 as validation
• Faster R-CNN detector with ResNet 50 head
• Public Detections

• Detailed model architecture for appearance:
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Comparison between different appearance LSTMs

• Bilinear LSTM significantly better than other LSTM variants
• ID switches almost halved

• Longer training sequence make a difference
• The best sequence length is now between 20-40 frames
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Comparison between different motion LSTMs

• Bilinear LSTM does not work as well as regular LSTM in 
motion LSTM
• Maybe the single modality of motion LSTM makes regular LSTM more 

suitable
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Final MOT-17 Result Videos
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MHT-DAM (Kim et al. 2015)



Final MOT-17 Result Videos

29C. Kim, FL, J. Rehg. ECCV 2018

MHT-bLSTM



Final MOT Results

• Showing all the top non-anonymous results on MOT-17 (as 
of 7/31/18), sorted by IDF1:
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Best 
in 

MOT 
2017

Ours



Conclusion: Bilinear LSTM

• We proposed Bilinear LSTM as an approach to learn long-
term appearance model in tracking

• Experiments show that it significantly outperforms regular 
LSTM, especially in terms of identity switches
• Bilinear LSTM seems capable of learning appearance model with multiple 

different appearances, where traditional LSTM struggles

• We hope that this methodology can be potentially useful in 
other scenarios beyond tracking
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Generalization Theory of CNN

• Have we ever questioned why are CNN filters always 
squares?
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3x3 5x5 7x7



Why does a Sobel CNN filter generalize?
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ConvolutionSobel filter

Convolution

*

௜௝ ௞௟ ௜ା௞,௝ା௟



Intuition of Generalization Capability

• In an image most of the time there is no boundary
• A boundary is a pattern
• A pattern is generalizable if it occurs rarely and most of the time there is 

no pattern
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No boundary 



Theory of Generalization Capability
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Theorem: For a simple 2-layer Network:

For any , the Gaussian complexity ( ) of 
satisfies

భ/మ

where means and fall within the same filter

In simpler terms: in order to generalize, the CNN filter needs to
choose a neighborhood in which the input are highly correlated
with each other.

X. Li, FL, X. Fern, R. Raich. ICLR 2017



Cross-Correlation of Natural Images
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Each pixel represents the 
cross-correlation between 

and 

Averaged over all pixels on PASCAL VOC

3x3

is the best!



What’s the use of this?

• Consider a domain where the cross-correlation pattern is 
different:
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The CNN filter shape should be different too!



An Algorithm to Decide CNN Filter Shapes

• We proposed a LASSO algorithm that recursively selects the 
highest-correlated locations based on the correlation image
• Which can learn filter shapes from unsupervised data
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e.g. for this pattern
We learned CNN should have

filters of these shapes



Experiments

• Recordings of hummingbird wingbeats and bird songs
• Spectrogram data
• 434 wingbeats recordings, 122 birdsong recordings
• Cross-validation accuracy is reported
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Bird Wingbeats
Spectrogram

Birdsong
Spectrogram



Explainable Deep Learning

• How can human
understand a 
very deep network?

• How can human trust
a deep network?

• Esp. in crucial decision making scenarios
• In an airplane, deep learning makes decision: Force land right now!

• In autonomous driving, deep learning makes decision: steer left to hit the 
highway separator!

• Need to generate mental model of deep learning that 
human can understand!
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Very complex 
Deep Network

10-100M 
parameters



Explaining Deep Learning Predictions
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Deep 
CNN

Idea: Use the Deep Learning in Human Brain

Crash the Plane

Deep 
CNN

Reason A Reason B Reason C

Crash the Plane

Aha! I think reason A means this…



Explaining Deep Learning Predictions

“A is something because of B, C, and D”.
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Bird

B, C, and D need to be 
(1) concise and 
(2) high-level concepts.

feathers

wings

beak



XNN (Explanation Neural Network)

44

Explanation features need to be:

1) Faithful to the DNN it is explaining
2) Do not include irrelevant concepts
3) Each feature represents a different concept



XNN (Explanation Neural Network)
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Sparse reconstruction: 
attempts to selectively 

reconstruct 
some dimensions of the 

features in a deep 
network

Faithfulness: attempts to be 
faithful to the original DNN

Orthogonality:
attempts to make 

features orthogonal to 
each other



Visualization

We can use heatmap tools to visualize the explanation 
features (x-features)
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Heatmap tool:

They used to be used on classifications
Now used on explanation features



XNN Explaining Bird Classifications
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Zhongang Qi, Saeed Khorram, FL. 
Arxiv: 1709.05360



Quantatitive Evaluations

Important for explanation
We evaluate 1) Faithfulness; 2) Orthogonality; 3) Locality (log of 

number of parts covered by each x-feature)

Locality evaluated because bird classification should be based on parts

48



Places-365 Dataset

Explain why CNN classify this room as a particular type
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Places-365 Quantitative Evaluations
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Conclusion about the second part

• We proposed 2 approaches that provided more 
understanding into CNN

• Gaussian complexity-based generalization theory explains 
why are CNN filters square-shaped

• Also provides an approach to learn filter shape if the data is not natural 
image

• XNN provides explanations of individual CNN predictions
• In the form of high-level heatmaps human can then read and reason 

about

• Many future work ahead
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Thank You!
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