Electrical Engineering & Computer Science

COLLEGE OF ENGINEERING

Some Thoughts and New Designs of Recurrent and Convolutional Architectures

Fuxin Li

AUGUST 1ST, 2018

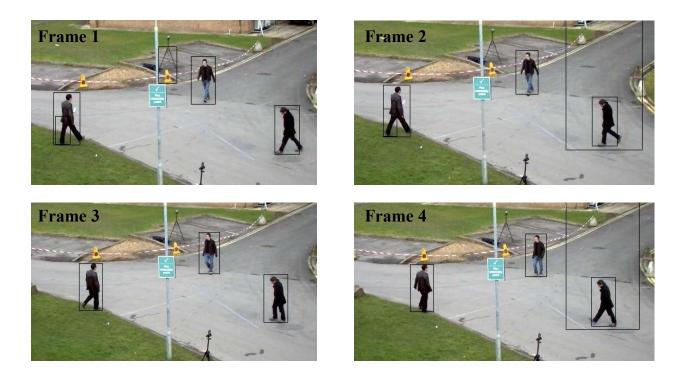
Today's Talk

- Multi-Target Tracking with bilinear LSTM
 - Novel LSTM model coming from studies on tracking
- Understanding more about CNNs
 - Generalization Theory based on Gaussian Complexity and Redesigns
 - XNN: Explaining CNN to human

Today's Talk

- Multi-Target Tracking with bilinear LSTM
 - Novel LSTM model coming from studies on tracking
- Understanding more about CNNs
 - Generalization Theory based on Gaussian Complexity and Redesigns
 - XNN: Explaining CNN to human

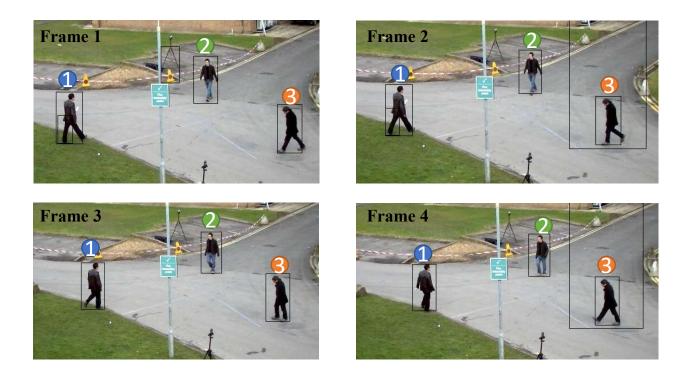
Multi-Target Tracking by Detection



Link person detections in each frame into tracks

Search space reduced by using a person detector

Multi-Target Tracking by Detection



Link person detections in each frame into tracks

Search space reduced by using a person detector

Multi-Target Tracking Illustration

The Essence of Tracking

Appearance Cues

People (targets) look different, they wear different clothes

Motion Cues

• People (targets) move in a smooth/piecewise-smooth manner

Electrical Engineering & Computer Science

Appearance Cues



Identity (ID) Switch!

Multiple Appearances + Motion

Successful tracking algorithms combine appearance and motion cues

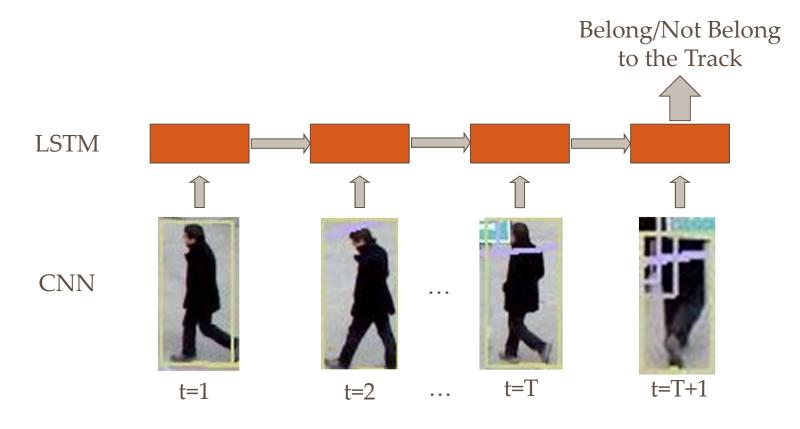
Each object can have many appearances, this need to be handled too

Goal: End-to-End Training

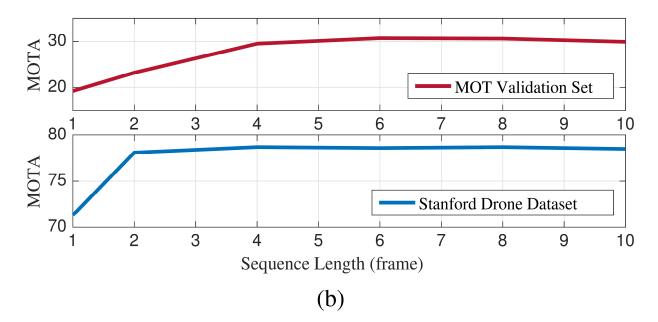
- Interestingly, tracking is rarely trained end-to-end
 - There is often an appearance model that is updated online
 - e.g. MHT-DAM [Kim et al. 2015], STAM [Chu et al. 2017]
 - And then a motion model that is separately updated
 - Most likely, a heuristic motion model (linear, constant velocity)
 - Or Kalman filter (e.g. [Kim et al. 2015])
 - And then post-processing
- There should be a few benefits for end-to-end training
 - Using more complex nonlinear motion models
 - Have the motion and appearance models better work together

Previous attempts on using a recurrent model

- A standard approach to train on a video sequence would be a convolution + recurrent model
 - Tried a couple of times (Milan et al. 2017, Sadeghian et al. 2017) with some success



Interesting Phenomenon on a Recurrent Model



Using longer sequences to train the LSTM does not seem to bring any benefit!

(image cf. Sadeghian et al. 2017) 11

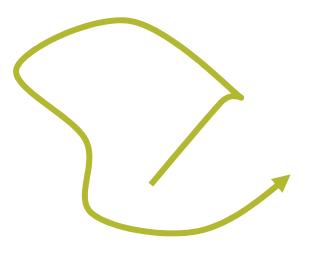
Reflect about this Longer Training Sequence issue:

Appearance Part

Multiple Appearances!

Longer sequence in training should be beneficial

Motion Part



Single Motion Trajectory!

Longer sequence may not be beneficial

Longer Training Sequence

Appearance Part

Multiple Appearances!

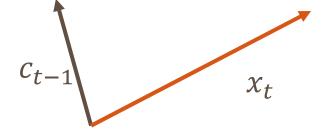
Longer sequence in training should be beneficial

Hypothesis:

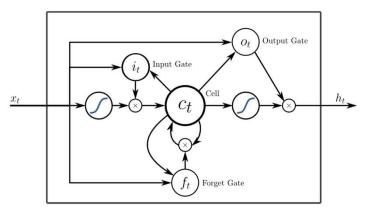
LSTM in multi-target tracking may **not** be modeling multiple appearances properly

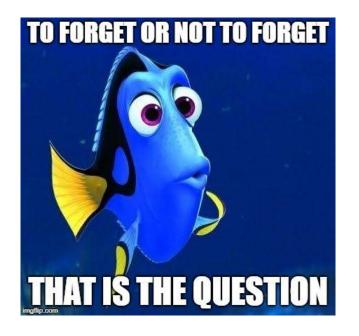
The Dilemma of the LSTM Memory

Memory



Why is there not an option of: put the memory aside? LSTM



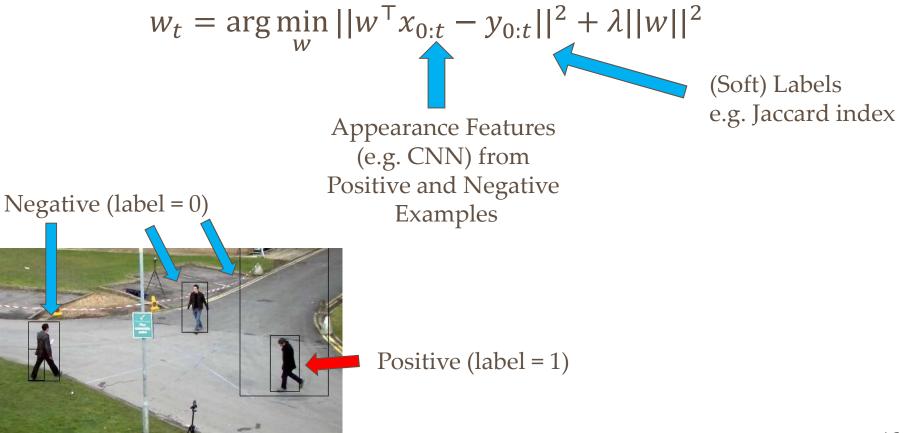


In the Quest for a New LSTM

- We check a non-deep appearance modeling approach
- Recursive least squares
 - Used in several work, e.g. DCF/KCF (Henriques et al. 2012), SPT (Li et al. 2013), MHT-DAM (Kim et al. 2015)
 - As well as being a classic tracking approach in robotics
 - Global optimal online appearance modeling framework
 - Appearance model is a classifier/regressor
 - Capable of modeling multiple appearances

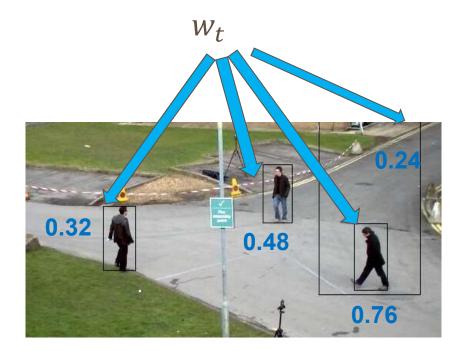
How does it work

- Tracker is a regressor
 - Appearance model: classifies any new appearance to object/not object



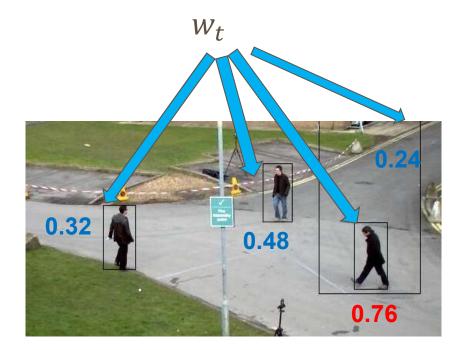
Testing and recursive training

• Test model on all detections:



Testing and recursive training

• Decide which one is matched to the track



Positive

Testing and recursive training

- Generate training examples for time t+1
- Solve for w_{t+1}

$$w_{t+1} = \arg\min_{w} ||w^{\top}x_{0:t+1} - y_{0:t+1}||^{2} + \lambda ||w||^{2}$$
Negative

Negative

19

(Some of the) good stuff with least squares

Solution of w:

$$w = (X^{\mathsf{T}}X + \lambda I)^{-1}X^{\mathsf{T}}y = (H + \lambda I)^{-1}c$$

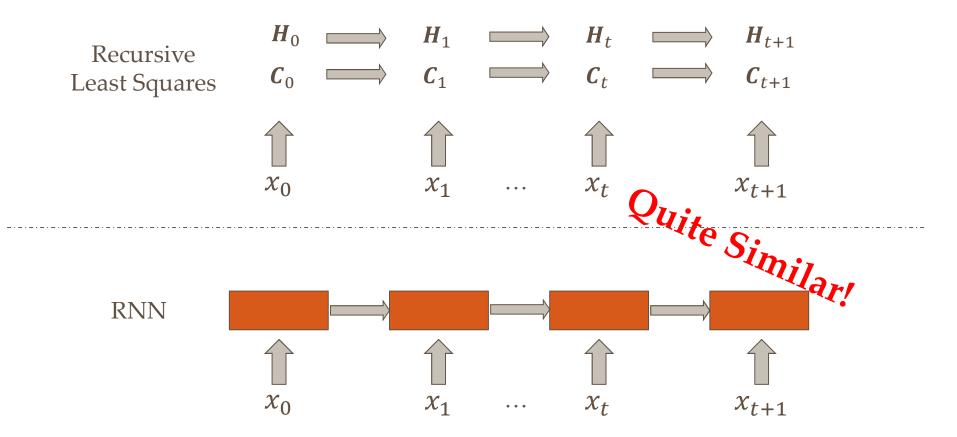
$$\boldsymbol{H}_{k} = \boldsymbol{X}_{(1:k-1)}^{\mathsf{T}} \boldsymbol{X}_{(1:k-1)} + \boldsymbol{X}_{(k)}^{\mathsf{T}} \boldsymbol{X}_{(k)}$$
$$\boldsymbol{c}_{k} = \boldsymbol{X}_{(1:k-1)}^{\mathsf{T}} \boldsymbol{y}_{(1:k-1)} + \boldsymbol{X}_{(k)}^{\mathsf{T}} \boldsymbol{y}_{(k)}$$

 Each frame is separable!
 Inversion does not depend on number of targets (tracks)

- In DCF/KCF (Henriquez et al. 2012, 2014), more computational savings with Fourier domain transformations
- In MHT-DAM (Kim et al. 2015), this is used to learn a different appearance model for each branch in an MHT tree

The "Recurrent Model" Version of Least Squares

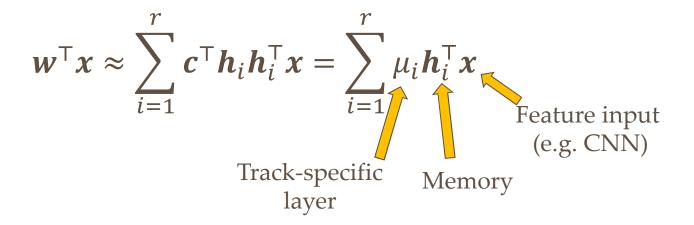
Problem: Storing $d \times d$ matrix H in RNN is too memory-consuming



Low-rank Approximation

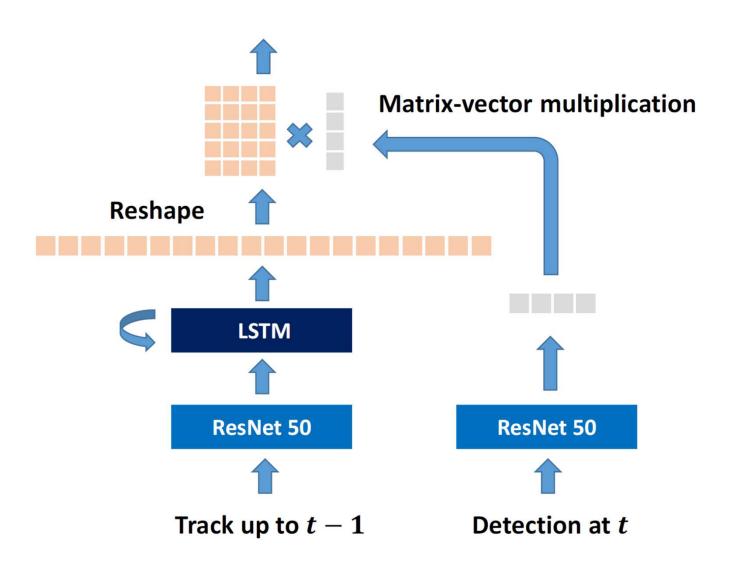
Go back to the solution formula

$$w = (X^{\mathsf{T}}X + \lambda I)^{-1}X^{\mathsf{T}}y = (H + \lambda I)^{-1}c$$



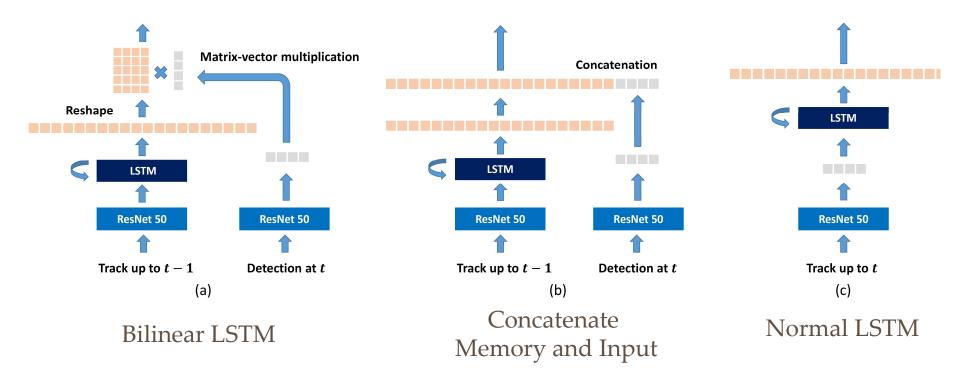
The difference between this and a normal RNN/LSTM update?

Bilinear LSTM



Bilinear LSTM Model Study

- Tried 3 models for
 - Appearance LSTM
 - Motion LSTM



Experiment Details

- MOT-17 dataset (without 17-09 and 17-10) + ETH + PETS + TUD + TownCentre + KITTI16 + KITTI19 as training
- MOT-17-09, MOT-17-10 as validation
- Faster R-CNN detector with ResNet 50 head
- Public Detections
- Detailed model architecture for appearance:

Soft-max				Soft-max				Soft-max	
Mat	rix-vector Mult	iplication-rel	u 8		FC-relu	512		FC-relu	512
Reshape	8×256	Reshape	256×1	Concatenation $2048 + 256$			LSTM	2048	
LSTM	2048			LSTM	2048			FC-relu ResNet-50	256 2048
FC-relu	256	FC-relu	256	FC-relu	256	FC-relu	256	Input at t	$128 \times 64 \times 3$
ResNet-50	2048	ResNet50	2048	ResNet-50	2048	ResNet50	2048		
Input at $t-1$	$128\times 64\times 3$	Input at t	$128\times 64\times 3$	Input at $t-1$	$128\times 64\times 3$	Input at t	$128\times 64\times 3$		

(a) (b) (c	c)	
------------	---	---	--

Comparison between different appearance LSTMs

- Bilinear LSTM significantly better than other LSTM variants
 - ID switches almost halved
- Longer training sequence make a difference
 - The best sequence length is now between 20-40 frames

		$N_{\rm max}$ MOTA IDF1 IDS
LSTM MOTA IDF1 IDS	State dim. MOTA IDF1 IDS	10 51.96 54.36 271
Bilinear 52.33 59.07 233	512 52.14 56.66 283	20 52.27 58.38 228
Baseline $150.4351.28412$	1024 52.36 55.85 222	40 52.33 59.07 233
Baseline $2 50.97 51.49 462$	2048 52.33 59.07 233	80 52.32 57.21 239
		160 52.41 55.19 222

Table 4: Ablation Study for Appearance Gating Networks. Baseline1 and Baseline2 are the networks shown in Table 2 (b) and (c) resepectively. (Left) State dim. = 2048, $N_{\text{max}} = 40$ (Middle) LSTM: Bilinear, $N_{\text{max}} = 40$, (Right) LSTM: Bilinear, State dim. = 2048

Comparison between different motion LSTMs

- Bilinear LSTM does not work as well as regular LSTM in motion LSTM
 - Maybe the single modality of motion LSTM makes regular LSTM more suitable

LSTM MOTA IDF1 IDS	State dim. MOTA IDF1 IDS	$N_{\rm max}$ MOTA IDF1 IDS
Bilinear 39.68 41.22 226	64 40.14 44.11 106	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Baseline1 38.90 19.38 449	128 40.16 44.26 97	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Baseline2 40.14 44.11 106	$256 40.15 44.48 \ 103$	160 40.20 45.15 91

Table 2: Ablation Study for Motion Gating Networks (Left) State dim. = 64, N_{max} = 40 (Middle) LSTM: Baseline2, N_{max} = 40, (Right) LSTM: Baseline2, State dim. = 64

Final MOT-17 Result Videos

MHT-DAM (Kim et al. 2015)

Final MOT-17 Result Videos

MHT-bLSTM

C. Kim, FL, J. Rehg. ECCV 2018

Final MOT Results

• Showing all the top non-anonymous results on MOT-17 (as of 7/31/18), sorted by IDF1:

	Tracker	Avg Rank	MOTA		MT	ML	EP	EN	ID Sw.	Frag	Hz	Detector
	eHAF17	13.5	51.8 ±13.2	54.7	23.4%	37.9%	33,212	236,772	1,834 (31.6)	2,739 (47.2)	0.7	Public
	2. 🗸										т	CSVT-02141-2018
	jCC	14.6	51.2 ±14.5	54.5	20.9%	37.0%	25,937	247,822	1,802 (32.1)	2,984 (53.2)	1.8	Public
	3. 🖌		N	1. Keuper, S. Tan	g, Y. Zhongjie, B	Andres, T. Brox,	B. Schiele. A mult	i-cut formulation for j	oint segmentation and track	ing of multiple objects. In arX	iv preprint arXiv:1	1607.06317, 2016.
\bigcirc	MOTDT17	15.8	50.9 ±11.9	52.7	17.5%	35.7%	24,069	250,768	2,474 (44.5)	5,317 (95.7)	18.3	Public
Ours	7. 🔘 🗹				C. Long, A. Ha	aizhou, Z. Zijie, S.	Chong. Real-time	Multiple People Trac	king with Deeply Learned C	andidate Selection and Perso	on Re-identificatio	on. In ICME, 2018.
	MHT_bLSTM	20.5	47.5 ±12.8	51.9	18.2%	41.7%	25,981	268,042	2,069 (39.4)	3,124 (59.5)	1.9	Public
	9. 🖓 🚭							C. Kim, F	. Li, J. Rehg. Multi-object Tr	acking with Neural Gating Us	ing Bilinear LSTM	M. In ECCV, 2018.
<	EDMT17	16.4	50.0 ±13.9	51.3	21.6%	36.3%	32,279	247,297	2,264 (40.3)	3,260 (58.0)	0.6	Public
	12. 🛛					J	. Chen, H. Sheng,	Y. Zhang, Z. Xiong.	Enhancing Detection Model	for Multiple Hypothesis Trac	king. In BMTT-PE	ETS CVPRw, 2017.
Deet	PHD_GSDL17	22.8	48.0 ±13.6	49.6	17.1%	35.6%	23,199	265,954	3,998 (75.6)	8,886 (168.1)	6.7	Public
Best	17. 🔘 🛛			Z. Fu, P. Fe	ng, F. Angelini, J	. Chambers, S. Na	qvi. Particle PHD	Filter based Multiple	Human Tracking using Onli	ne Group-Structured Dictiona	iry Learning. In IB	EEE Access, 2018.
in	FWT	16.4	51.3 ±13.1	47.6	21.4%	35.2%	24,101	247,921	2,648 (47.2)	4,279 (76.3)	0.2	Public
МОТ	26. 🛛					R. Henschel, L. L	eal-Taixé, D. Cren	ners, B. Rosenhahn.	Fusion of Head and Full-Bo	dy Detectors for Multi-Object	Tracking. In Traj	net CVPRW, 2018.
	MHT_DAM	18.0	50.7 ±13.7	47.2	20.8%	36.9%	22,875	252,889	2,314 (41.9)	2,865 (51.9)	0.9	Public
2017	28. 🖌								C. Kim, F. Li, A. Ciptadi,	J. Rehg. Multiple Hypothesi	s Tracking Revisit	ted. In ICCV, 2015.

Conclusion: Bilinear LSTM

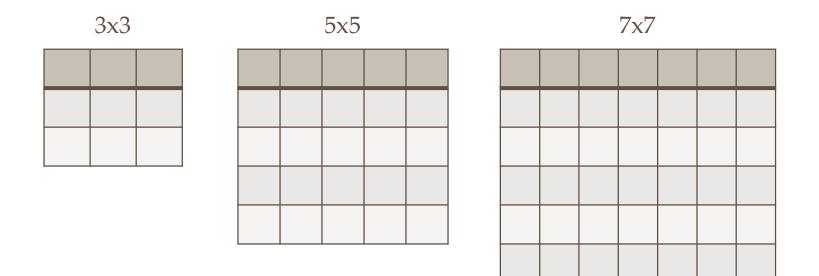
- We proposed Bilinear LSTM as an approach to learn longterm appearance model in tracking
- Experiments show that it significantly outperforms regular LSTM, especially in terms of identity switches
 - Bilinear LSTM seems capable of learning appearance model with multiple different appearances, where traditional LSTM struggles
- We hope that this methodology can be potentially useful in other scenarios beyond tracking

Today's Talk

- Multi-Target Tracking with bilinear LSTM
 - Novel LSTM model coming from studies on tracking
- Understanding more about CNNs
 - Generalization Theory based on Gaussian Complexity and Redesigns
 - XNN: Explaining CNN to human

Generalization Theory of CNN

 Have we ever questioned why are CNN filters always squares?



Why does a Sobel CNN filter generalize?

Sobel filter

Convolution

F15

F25

F35

F45

F55

F65

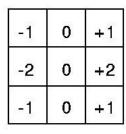
F16

F26

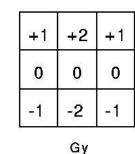
F36

F46 F56

F66



Gx



H11	H12	H13		F11	F12	F13	F14
H21	H22	H23	*	F21	F22	F23	F24
H31	H32	НЗЗ		F31	F32	F33	F34
				F41	F42	F43	F44
				F51	F52	F53	F54
				F61	F62	F63	F64

G11	G12	G13	G14	G15	G16
G21	G22	G23	G24	G25	G26
G31	G32	G33	G34	G35	G36
G41	G42	G43	G44	G45	G46
G51	G52	G53	G54	G55	G56
G61	G62	G63	G64	G65	G66

 $G_{ij} = \sum H_{kl} F_{i+k,j+l}$

=

Convolution I * Gx

Intuition of Generalization Capability

- In an image most of the time there is no boundary
 - A boundary is a pattern
 - A pattern is generalizable if it occurs rarely and most of the time there is no pattern

Theory of Generalization Capability

Theorem: For a simple 2-layer Network:

 $F = \{ \mathbf{x} \longrightarrow \sum_{i} v_i \sigma(\mathbf{w}_i * \mathbf{x}) : \| \mathbf{v} \| \le 1 \| \mathbf{w} \| \le 1 \}$

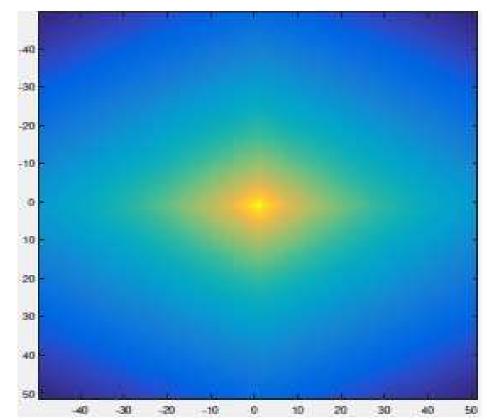
For any $x_1, ..., x_N \in \mathbb{R}^d$, the Gaussian complexity $(\widehat{\boldsymbol{G}}_N)$ of *F* satisfies

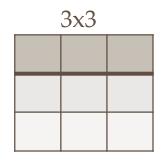
$$\widehat{\boldsymbol{G}}_{N}(F) \leq \frac{cB(\ln d)^{1/2}}{N} \max_{\mathbf{j}-\mathbf{j}'\in\mathcal{N}} \sqrt{\sum_{1}^{N} \|\mathbf{x}_{i}(\mathbf{j})-\mathbf{x}_{i}(\mathbf{j}')\|^{2}}$$

where $\mathbf{j} - \mathbf{j}' \in \mathcal{N}$ means \mathbf{j} and \mathbf{j}' fall within the same filter

In simpler terms: in order to generalize, the CNN filter needs to choose a neighborhood in which the input are **<u>highly correlated</u>** with each other.

Cross-Correlation of Natural Images





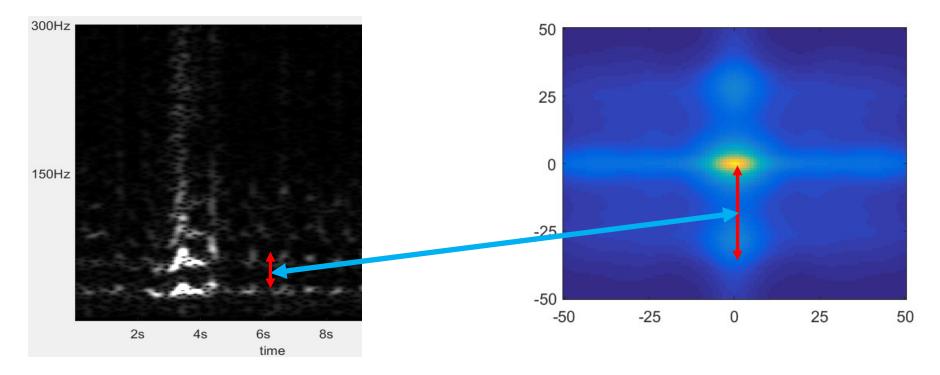
is the best!

Each pixel represents the cross-correlation between (x_0, y_0) and $(x_0 + \Delta x, y_0 + \Delta y)$

Averaged over all pixels on PASCAL VOC

What's the use of this?

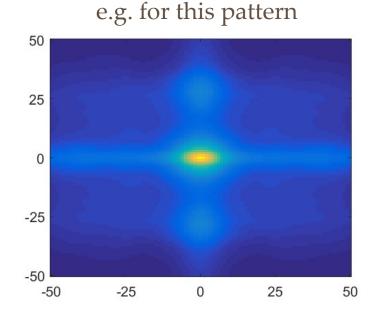
Consider a domain where the cross-correlation pattern is different:

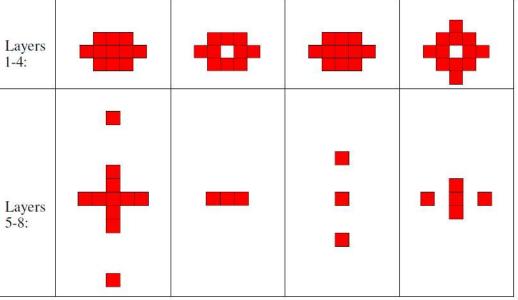


The CNN filter shape should be different too!

An Algorithm to Decide CNN Filter Shapes

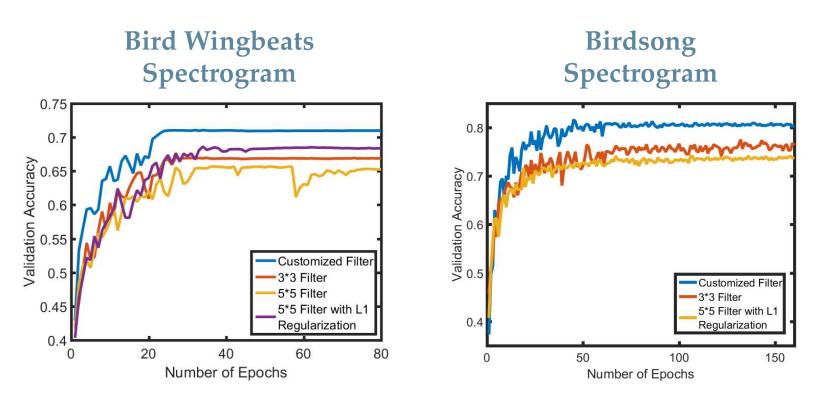
- We proposed a LASSO algorithm that recursively selects the highest-correlated locations based on the correlation image
 - Which can learn filter shapes from unsupervised data



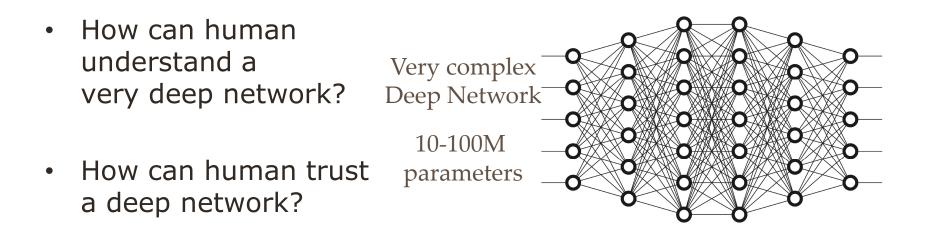


Experiments

- Recordings of hummingbird wingbeats and bird songs
 - Spectrogram data
 - 434 wingbeats recordings, 122 birdsong recordings
 - Cross-validation accuracy is reported



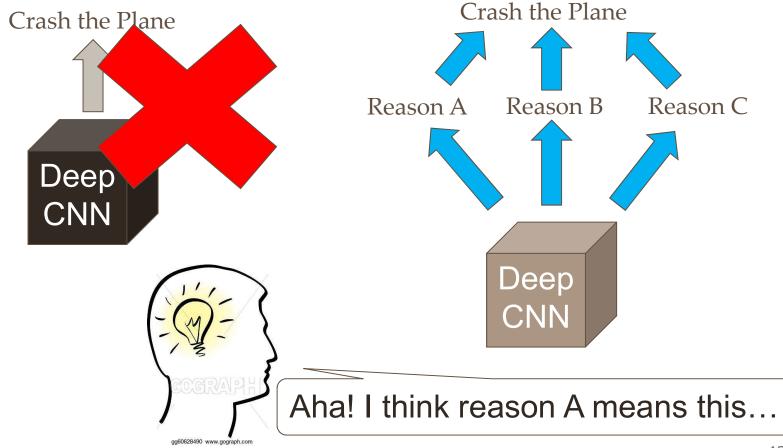
Explainable Deep Learning



- Esp. in crucial decision making scenarios
- In an airplane, deep learning makes decision: Force land right now!
- In autonomous driving, deep learning makes decision: steer left to hit the highway separator!
- Need to generate *mental model* of deep learning that human can understand!

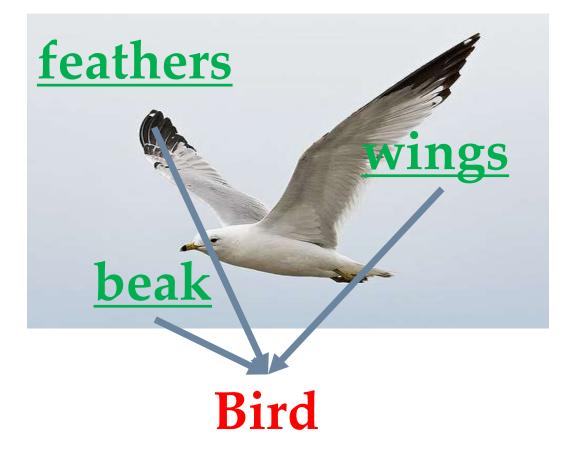
Explaining Deep Learning Predictions

Idea: Use the Deep Learning in Human Brain



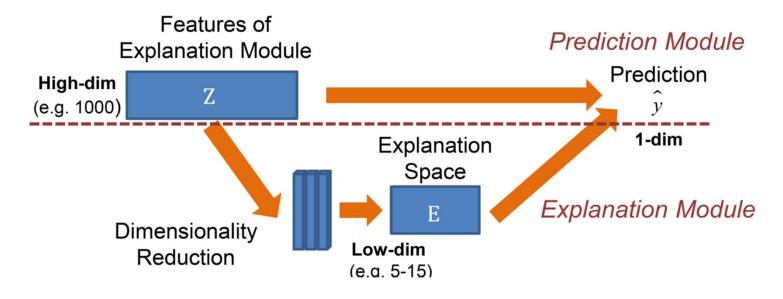
Explaining Deep Learning Predictions

"A is something because of **B**, **C**, and **D**".



<u>B, C, and D</u> need to be
(1) concise and
(2) high-level concepts.

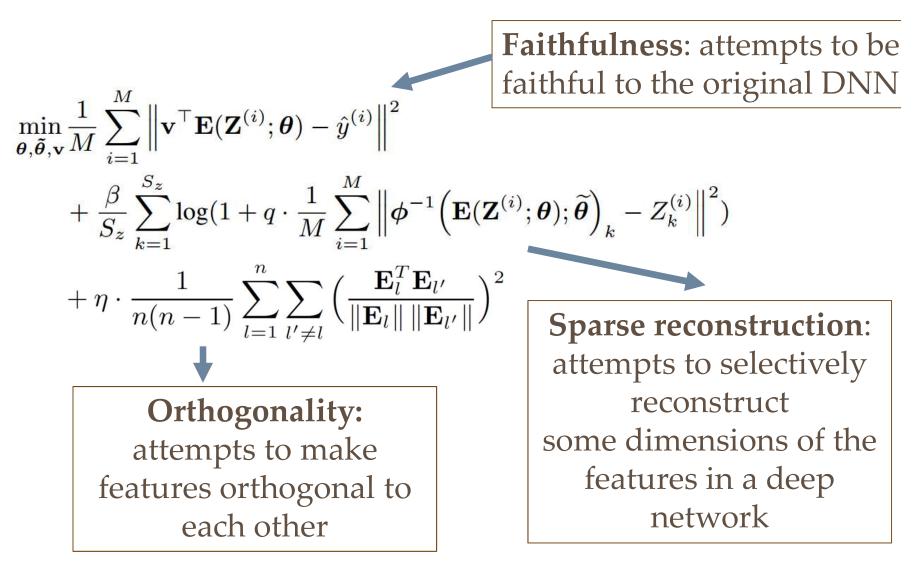
XNN (Explanation Neural Network)



Explanation features need to be:

- 1) Faithful to the DNN it is explaining
- 2) Do not include irrelevant concepts
- 3) Each feature represents a different concept

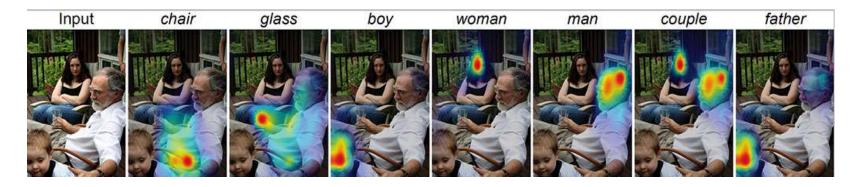
XNN (Explanation Neural Network)



Visualization

We can use heatmap tools to visualize the explanation features (x-features)

Heatmap tool:



They used to be used on classifications Now used on explanation features

XNN Explaining Bird Classifications

Zhongang Qi, Saeed Khorram, FL. Arxiv: 1709.05360

Quantatitive Evaluations

Important for explanation

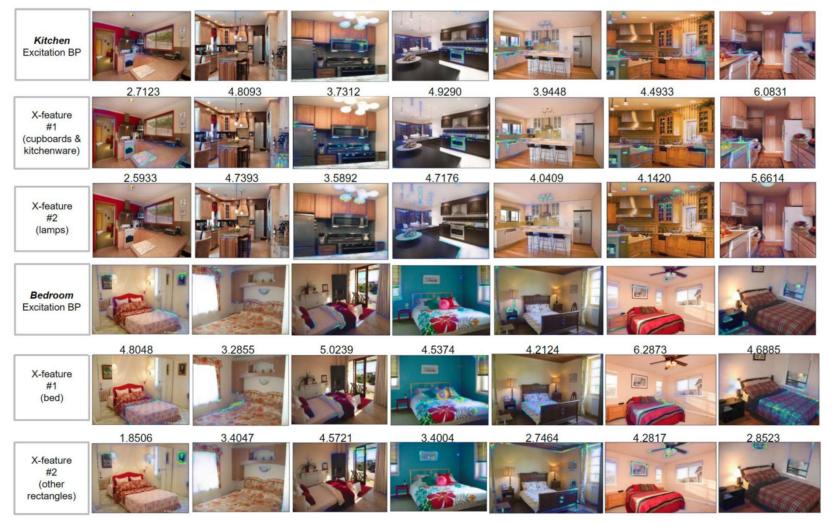
We evaluate 1) Faithfulness; 2) Orthogonality; 3) Locality (log of number of parts covered by each x-feature)

Locality evaluated because bird classification should be based on parts

Method		SRAE	NN	SAE	Lasso	CAE	Z	ExcitationBP
F_{reg}	Training	0.0812	0.0696	0.0972	3.5785	4.1513		
	Testing	0.1659	0.1304	0.1981	3.7928	4.0021		
F_{cls}	Training							
	Testing	99.99%	100.0%	99.98%	71.53%	69.28%		
01	Positive	0.6554	0.9765	0.8794	1.2052	0.6301		
O2	Positive	2.4312	4.9112	3.5057	3.9851	2.3884		
Locality	Positive	1.9713	2.4360	2.1997	2.1082	2.1227	1.9685	2.5659

Places-365 Dataset

Explain why CNN classify this room as a particular type



Places-365 Quantitative Evaluations

Method		SRAE	NN	SAE	Lasso	CAE	ExcitationBP
F_{reg}	Training	0.5527	0.3346	1.4768	4.0726	4.3579	
	-				4.3366		
F_{cls}	Training	97.22%	97.17%	94.59%	90.19%	90.11%	—
	Testing	94.79%	94.86%	93.29%	88.55%	88.42%	
01	Positive	0.2252	0.3472	0.4578	0.4729	0.2741	
O2	Positive	0.5617	0.8852	1.0799	0.9194	0.5945	
Locality	Positive	2.7208	2.7756	2.7819	2.7282	2.7627	2.7591

Conclusion about the second part

- We proposed 2 approaches that provided more understanding into CNN
- Gaussian complexity-based generalization theory explains why are CNN filters square-shaped
- Also provides an approach to learn filter shape if the data is not natural image
- XNN provides explanations of individual CNN predictions
- In the form of high-level heatmaps human can then read and reason about
- Many future work ahead

Thank You!

Fuxin Li: <u>http://web.engr.oregonstate.edu/~lif</u> Email: <u>lif@oregonstate.edu</u>

2077 Kelley Engineering Center, Oregon State University Corvallis OR 97331

I would like to thank my collaborators who contributed to the work in these slides:

Georgia Tech: Chanho Kim, James M. Rehg

Oregon State University: Xingyi Li, Zhongang Qi, Saeed Khorram, Xiaoli Fern, Weng-Keen Wong