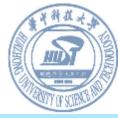
华中科技大学自动化学院,图像识别与人工智能研究所, 多谱信息处理图家重点实验室, 图像信息处理与智能控制教育部重点实验室



Efficient Large Scale 3D Reconstruction

陶文兵 (Wenbing Tao)

School of Automation,

Institute for Pattern Recognition and Artificial Intelligence National Key Laboratory of Science and Technology on Multi-spectral Information Processing, Key Laboratory of Ministry of Education for Image Processing and Intelligence Control, Huazhong University of Science & Technology,

主要合作者: Qingshan Xu(徐青山), Kun Sun(孙琨), Tao Xu(徐涛)

Large scale Structure from Motion

03

Multi-view stereo for 3D dense reconstruction

PART 1 Background

Background

The three-dimensional model can provide the most true perception of the world

Background

The three-dimensional city model has extensive application

市政规划

2

灾后救援

虚拟景观

数字校园

交通管理

地图查询

Existing 3D modeling method

1. 利用几何造型技术建模

优点

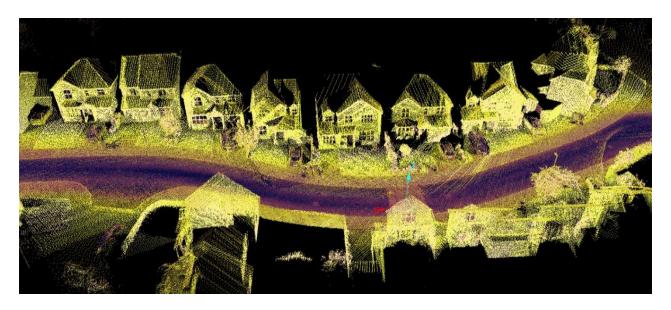
技术成熟,有很多流行的商业软件

缺点

◆ 重建精度差,不能反映真实尺寸◆ 重建真实感差,技术过于虚拟化

Existing 3D modeling method

2. 主动接触式三维建模(激光雷达扫描仪、结构光扫描仪、红外测距仪)



优点 主动测量,直接得到三维点 云信息,不需要复杂的后续 计算和处理

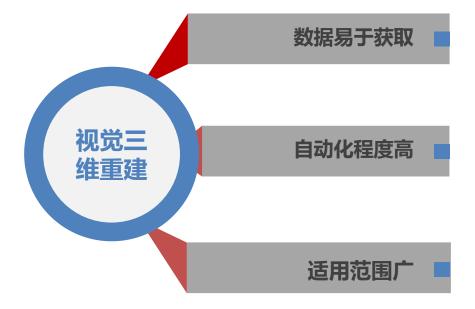
缺点

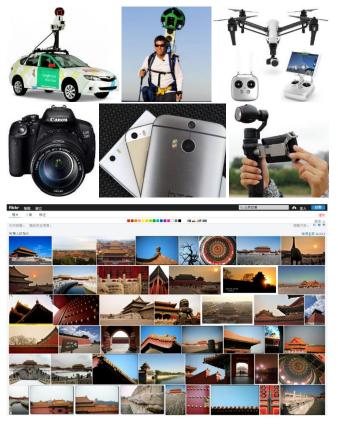
Existing 3D modeling method

3. 被动式三维建模(视觉算法)

- ➤ Shape from X (阴影、纹理、遮挡等)
- ➢ 双目立体视觉 (Binocular Stereo)
- ➤ 运动恢复结构 (Structure from Motion, SfM)

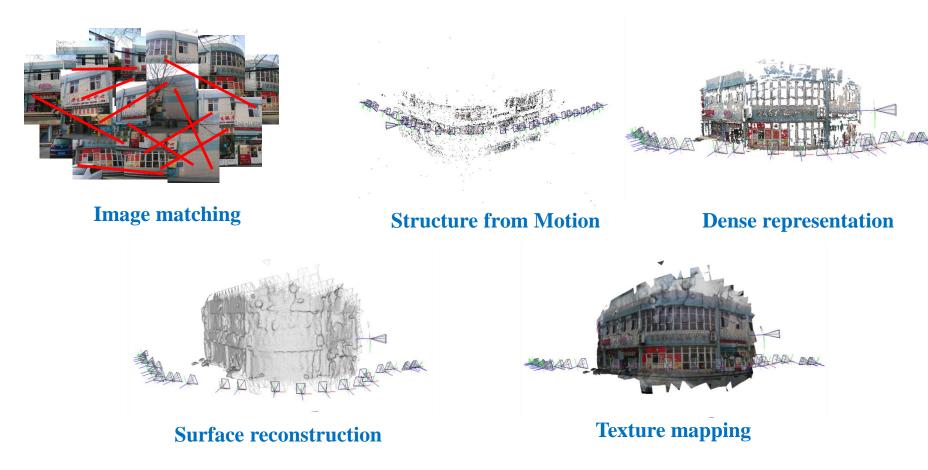
Multiple-view 3D reconstruction





2014 年全球有大约 8800 亿张新的图片产生 2017 年这一数字达到 1.3 万亿

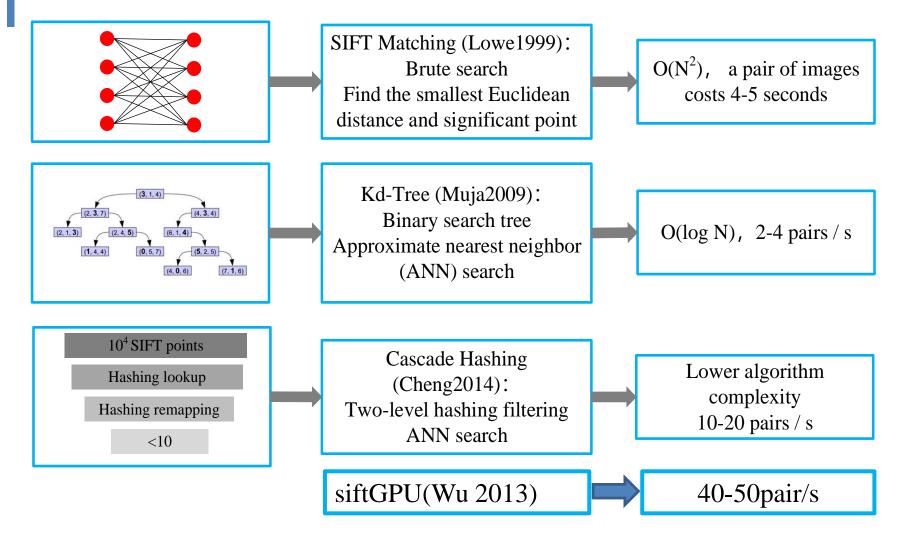
The basic procedure



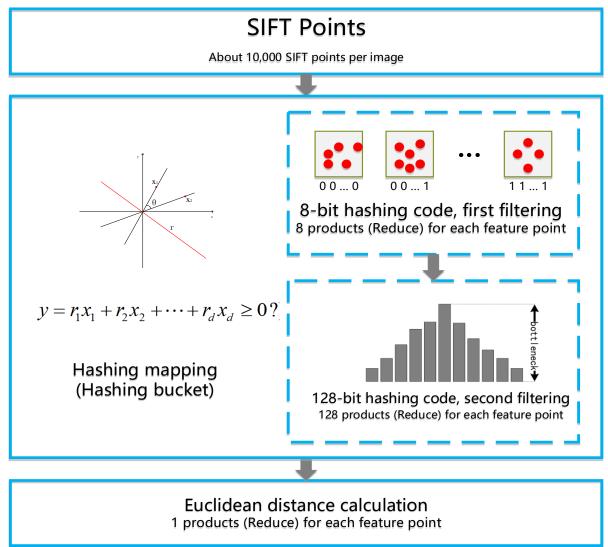
PART **2**

GPU Accelerated Cascade Hashing Image Matching

SIFT, Kd-Tree, CasHash and siftGPU

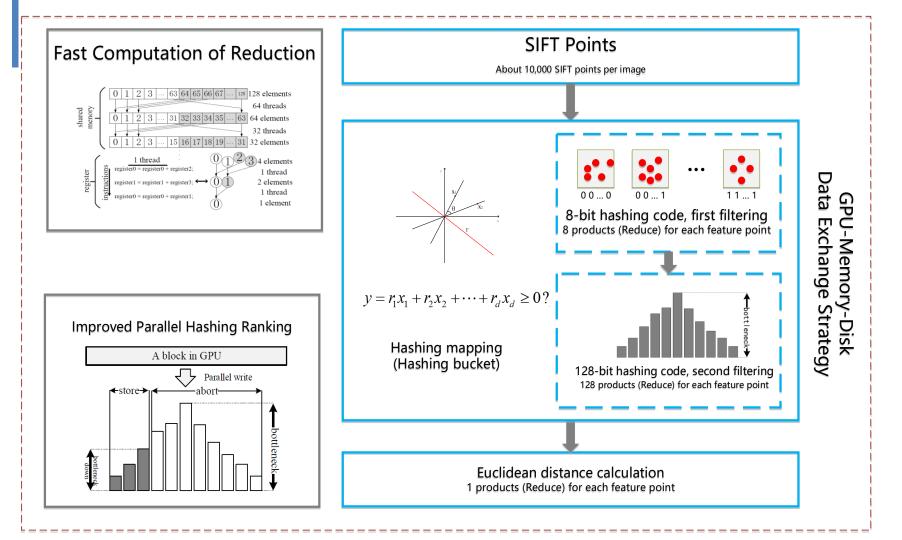


Cascade Hashing



GPU Accelerated CasHash

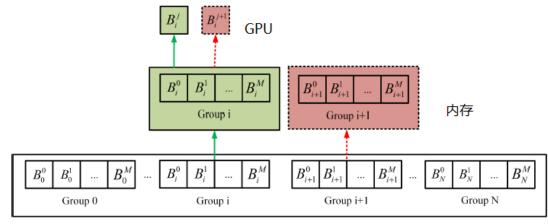
GPU algorithms



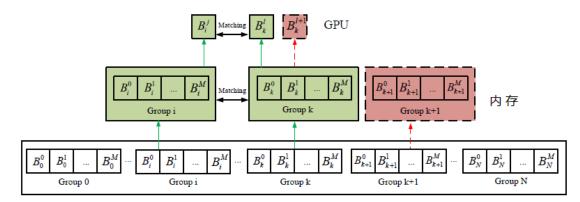
Tao Xu, Kun Sun and Wenbing Tao*, GPU Accelerated Cascade Hashing Image Matching for Large Scale 3D reconstruction, arXiv:1805.08995

GPU Accelerated CasHash

Data Scheduling Strategy



硬盘



Experiments

Results on Public Available Datasets

(b) Data-erpbero (259 images) 33411 pairs 8641 mean points					
Method	time(s)	speed(pairs/s)	speedup		
Kd-Tree	1.479e4	2.26	1.00 imes		
CasHash	1461.525	22.86	$10.12 \times$		
SiftGPU	752.164	44.42	$19.66 \times$		
Ours	34.394	971.42	$429.91 \times$		

(c) Data-Aos_Hus (811 images) 328455 pairs 7768 mean points

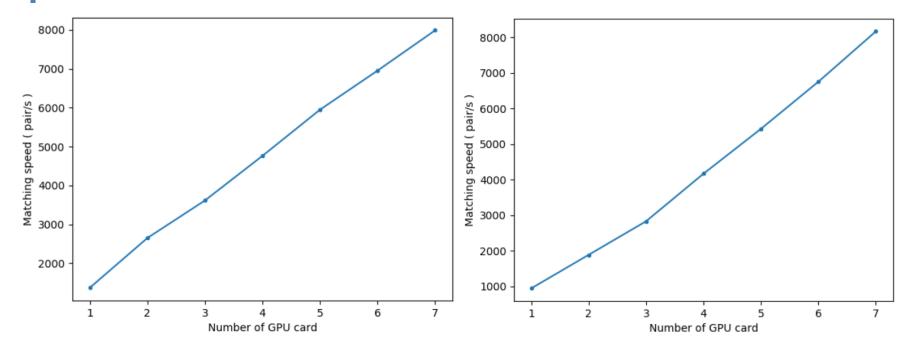
Method	time(s)	speed(pairs/s)	speedup
Kd-Tree	1.456e5	2.26	1.00 imes
CasHash	2.800e4	11.73	5.20 imes
SiftGPU	6971.441	47.11	$20.89 \times$
Ours	292.541	1122.77	$497.81 \times$

(d) Our Method on Some Large Data Set.

$\operatorname{time}(s)$	$\operatorname{speed}(\operatorname{pairs/s})$
$1.054\mathrm{e}4$ $1.565\mathrm{e}5$	$\frac{1093}{1167}$
	1.054e4

Experiments on large image set

Multiple GPU acceleration



The relationship between the number of GPU card and matching speed. The experiment on Data-Dubrovnik(6K) time is showed in left. The experiment on Data-Rome(16K) time is showed in right.

Experiments

Geometry-aware CasHashGPU

(a) Data-Dubrovnik
6K [6] (6044 images) 7438 mean points; exhaustive matching
 1.826×10^7 pairs, guided matching 58611 pairs

Method	time(s)	speedup
CasHashGPU	1.054×10^{4}	$1.00 \times$
Ga-CasHashGPU	1548.89	$6.80 \times$

(b) Data-Rome
16K [6] (15178 images) 7891 mean points; exhaustive matching
 $1.152{\times}10^8$ pairs, guided matching 145101 pairs

Method	time(s)	speedup
CasHashGPU	1.565×10^{5}	$1.00 \times$
Ga-CasHashGPU	20863.68	$7.50 \times$

The top 20% scale SIFT features is used to do exhaustive image matching (Wu 2013) by CasHashGPU

> The information is used to guide the remaining matching procedure

Experiments

GPS-aware CasHashGPU

(a) Data-ArtsQuad-348 (348 images), 7717 mean points; exhaustive matching 60378 pairs, guided matching 34800 pairs

Method	Time (s)	Speed (pairs/s)	Speedup
CasHashGPU	54.78	1102.42	1.00
GPS-CasHashGPU	45.95	835.68	1.19

(b) Data-ArtsQuad-4425 (4425 images), 7396 mean points; exhaustive matching
 9.788×10⁶ pairs, guided matching 4.425×10⁵ pairs

Method	Time (s)	Speed (pairs/s)	Speedup
CasHashGPU	5745.17	1703.71	1.00
GPS-CasHashGPU	316.47	1398.24	18.15

(c) Data-Campus (9987 images), 7862 mean points; exhaustive matching 4.987×10^7 pairs, guided matching 9.987×10^5 pairs

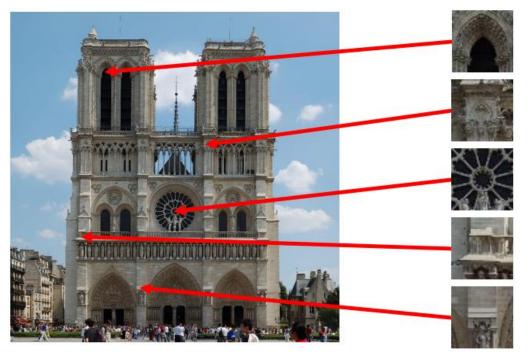
Method	Time (s)	Speed (pairs/s)	Speedup
CasHashGPU	50521.36	987.01	1.00
GPS-CasHashGPU	1227.23	813.78	41.17

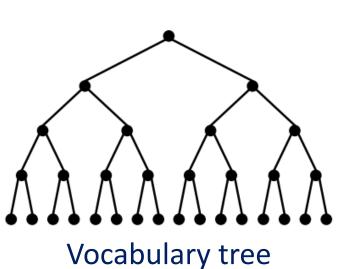
Related works

Vocabulary tree

Fast searching for nearest neighbors.

Bag of words





Our improvement on overlap detection

A fast GPU vocabulary indexing implementation

1DSfM_Roman_Forum, 2360 images					
Stage	GPU Time(s)	CPU Time(s)	Speedup factor		
Pre-Process	0.782	0	-		
Search(+Sparse)	7.854	267.478	34.0		
Weight	0.005	0.220	-		
Normalize	0.182	0.544	-		
Score	0.506	1.027	-		
Data Copy	2.444	0	-		
Others	0.501	0.242	-		
Total	12.274	269.511	21.9		

All the tests are performed on a machine with 256GB RAM, one Intel Xeon E5-2630 v3 @ 2.40GHz CPU and one NVIDIA GeForce GTX Titan X GPU card

Expect to process 10000 images within 1 minute.

1	DSfM_Vienna_Cat	hedral, 6280 imag	es
Stage	tage GPU Time(s) CPU Time(s)		Speedup factor
Pre-Process	0.892	0	-
Search(+Sparse)	29.317	837.375	28.5
Weight	0.023	0.346	-
Normalize	0.466	1.284	-
Score	5.821	19.399	-
Data Copy	6.852	0	-
Others	1.910	0.930	-
Total	45.281	859.334	18.9

Experiments

GPU-based F-matrix and H-matrix estimation

Table 1. Runtime (in second) of CPU-based geometric verification and GPU-based geometric verification on different datasets.

Dataset Images Matche	Matched Pairs St	Staga	GPU-base	GPU-based Time		CPU-based Time		Speed Up	
	Matcheu I ans	Stage	RANSAC	Total	RANSAC	Total	RANSAC	Total	
			F-matrix	9.633	14.096	1882.277	2317.989	195.4×	164.4×
NotreDame	715	97408	H-matrix	11.177	21.906	632.915	668.815	56.6×	30.5×
			Overall	-	36.002	-	2986.804	-	83.0×
			F-matrix	53.703	75.722	9348.471	10528.590	174.1×	139.0×
Piccadilly	7351	2221097	H-matrix	28.927	53.073	1273.132	1334.644	44.0×	25.1×
		Overall	-	128.795	-	11863.234	-	92.1×	
Rome16K 15178		F-matrix	195.707	317.577	36529.010	45322.348	186.7×	142.7×	
	15178 3229080	H-matrix	277.864	522.389	14787.368	15538.534	53.2×	29.7×	
		Overall	-	839.966	-	60860.882	-	72.5×	

PART 3

Multiple starting points selection and data partition for large scale SFM

Structure from Motion

Giving a set of images, estimate the camera poses and the sparse 3D structure.

Scene geometry (structure): Given 2D point matches in two or more images, where are the corresponding points in 3D?

Correspondence (matching): Given a point in just one image, how does it constrain the position of the corresponding point in another image?

Camera geometry (motion): Given a set of corresponding points in two or more images, what are the camera matrices for these views?

Structure from Motion

The general pipeline of the SfM algorithm



Structure from Motion

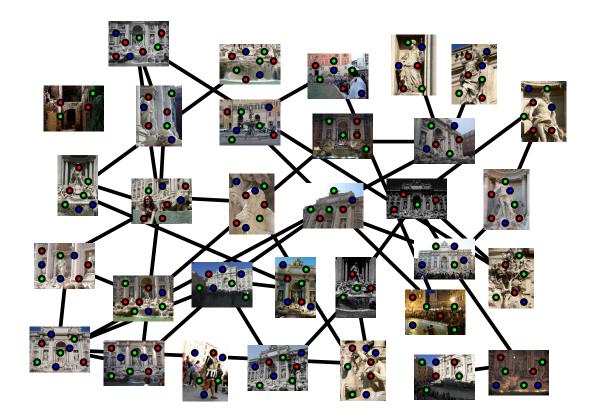
Matching graph construction

Structure from Motion

Matching graph construction

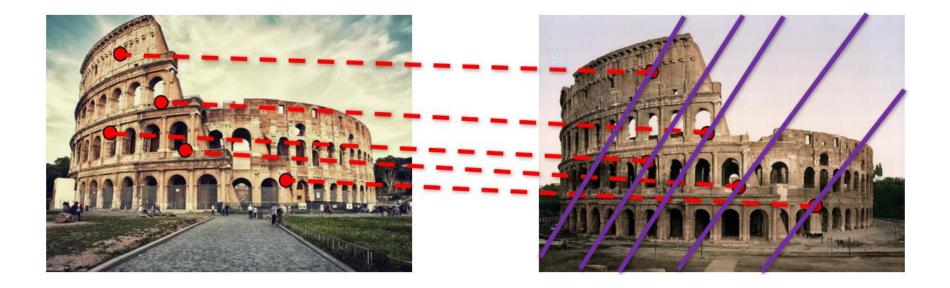
Structure from Motion

Matching graph construction



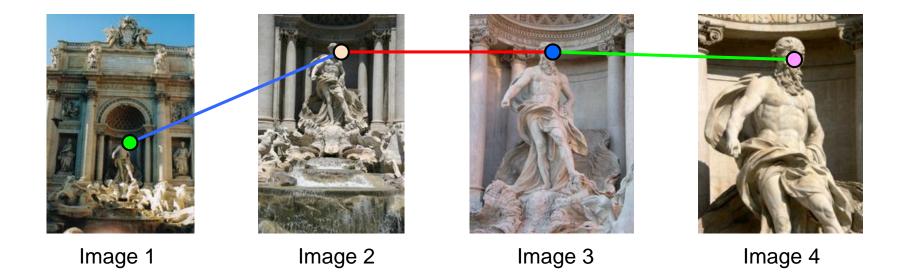
Structure from Motion

Epipolar Geometry estimated by RANSAC



Structure from Motion

Build tracks from matches

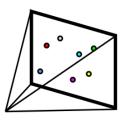


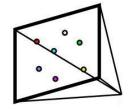
Link up matches between pairs of images into tracks between multiple images
 Each track corresponds to a 3D point

Structure from Motion

Choose two views

They have the most number of feature correspondences
 They have wide baseline (The baseline can be measured by the inlier ratio of a planar homography)





Structure from Motion

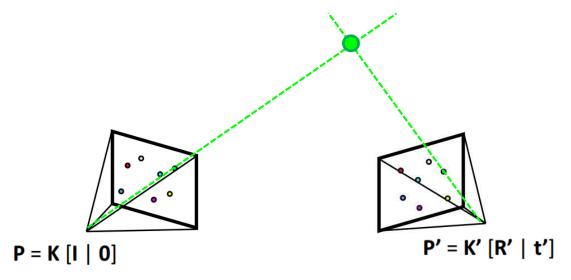
Estimate relative pose using two-view geometry

- Camera intrinsics known Essential matrix, **E** (5 points)
- Camera intrinsics unknown Fundamental matrix, F (7 points)

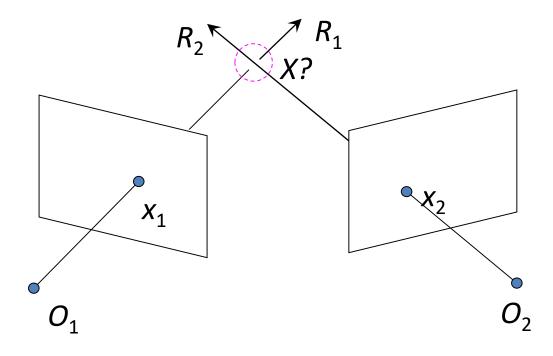
Structure from Motion

Triangulate inlier correspondences

Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

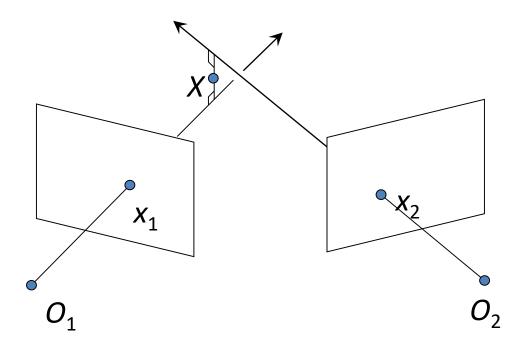


Structure from Motion Triangulation



We want to intersect the two visual rays corresponding to x1 and x2, but because of noise and numerical errors, they don't meet exactly

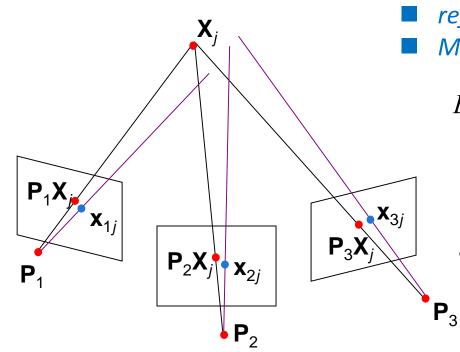
Structure from Motion Triangulation



Find shortest segment connecting the two viewing rays and let X be the midpoint of that segment

Structure from Motion

Bundle Adjustment

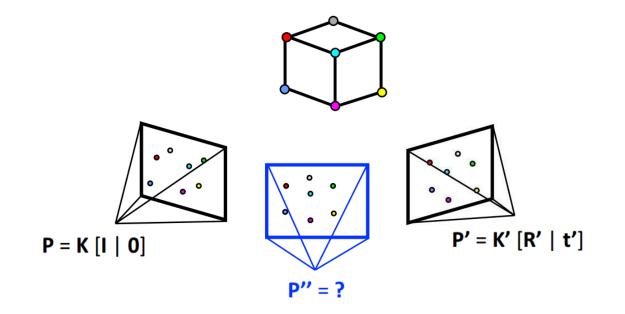


refine 3D points refine camera parameters Minimize reprojection error: $E(\mathbf{P}, \mathbf{X}) = \bigotimes_{i=1}^{m} \bigotimes_{j=1}^{n} W_{ij} D(\mathbf{x}_{ij}, \mathbf{P}_i \mathbf{X}_j)^2$ $W_{ij} \text{ indicator variable for visibility} \text{ of point } \mathbf{X}_j \text{ in camera } \mathbf{P}_i$

- Minimizing this function is called bundle adjustment
 - Optimized using non-linear least squares, e.g. Levenberg-Marquardt

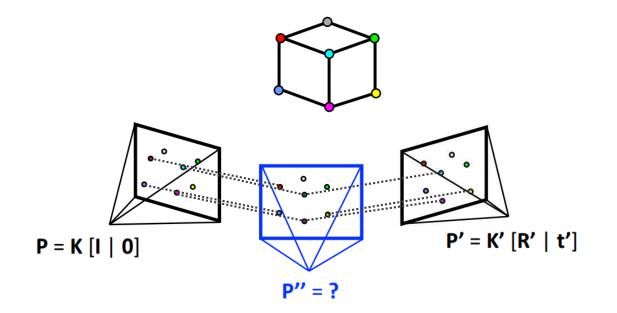
Structure from Motion

Add new cameras



Structure from Motion

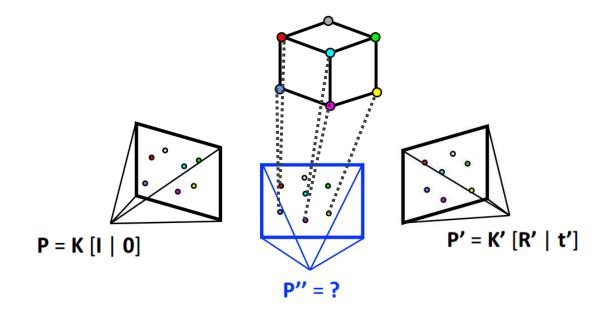
Add new cameras



Structure from Motion

Add new cameras

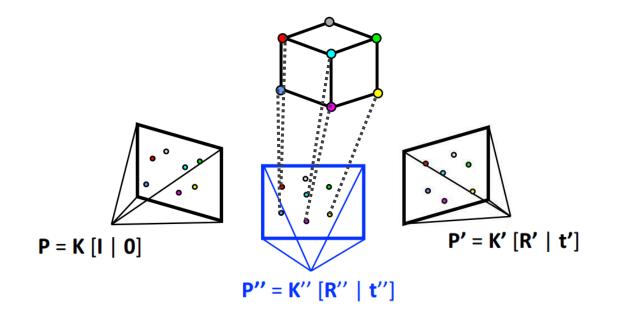
Feature tracks help a lotMaximize number of 2D-3D correspondences



Structure from Motion

Add new cameras

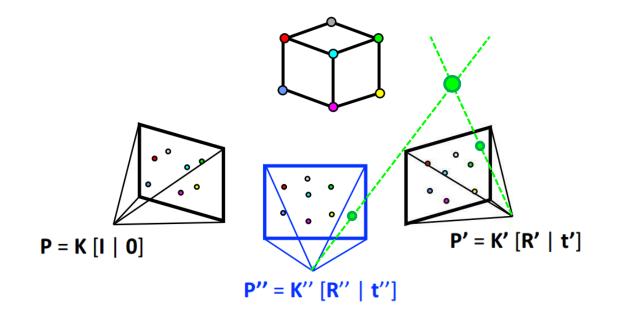
Solve Perspective-n-Point problem



Structure from Motion

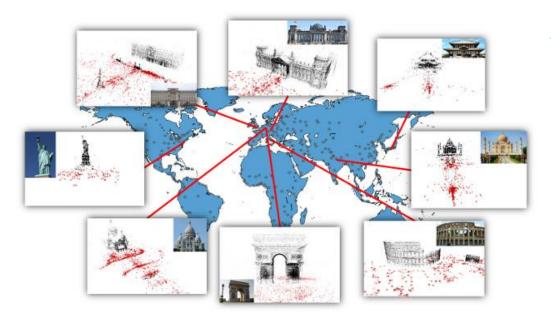
Add new cameras

Triangulate new pointsBundle adjustment



Difficulties

The difficulties in SfM for large scale unordered images.



100 million images on Yahoo

1. Explosive image data:

- Image matching is time consuming
- Sequentially adding them is time consuming
- How to partition the image set properly?

Difficulties

The difficulties in SfM for large scale unordered images.

VS

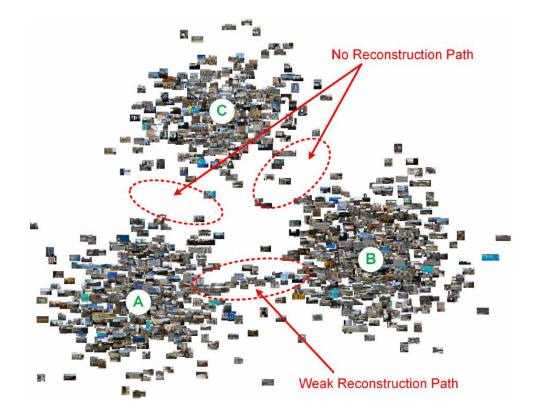
unstructured

2. Unordered:

- Unknown neighborhood, unknown scene overlap
- Burdensome image matching procedure

Difficulties

The difficulties in SfM for large scale unordered images.



- 3. Non-uniform distributed images:
 - Weak or no overlap between images
 - If start from C, neither A nor B could be reconstructed
 - If start from A or B, large error could be accumulated

Related works

Linear time SfM

Run a new SfM procedure in the remaining images.

- A linear-time incremental SfM system including: GPU-based SIFT, GPU-based BA
- Restarting a new SfM procedure from the remaining images.
- Models are not produced in parallel.
- Good models might be reconstructed after many failures, which wastes a lot of time.

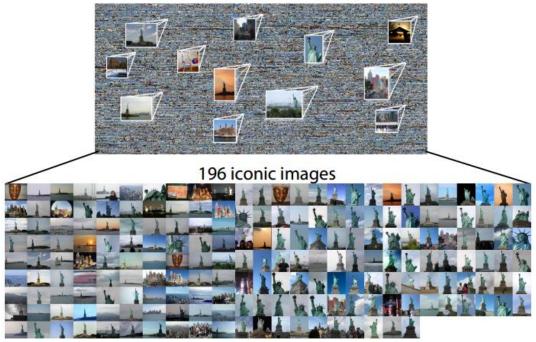
Wu C., VisualSFM, http://ccwu.me/vsfm/. Wu C., et al., 3DV 2013, CVPR2011. Schonberger J. et al., CVPR2016.

Related works

Iconic Scene Graph

Summarize the scene by extracting iconic images.

Statue of Liberty: 45284 images

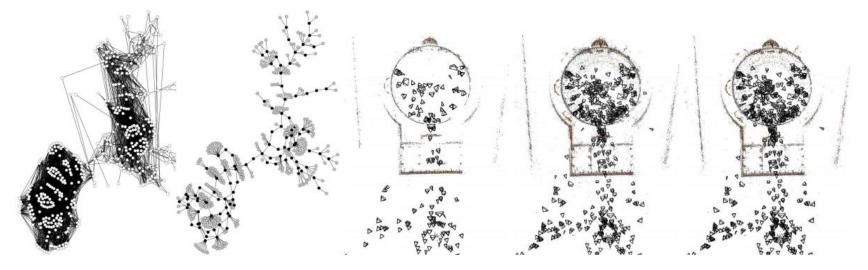


- k-means clustering with gist descriptors.
- Select an iconic image for each cluster.
- Run normalized cuts to break iconic scene graph into smaller components.
- Data discontinuity not solved & the number of clusters is hard to know in advance
- X. Li, et al. Modeling and recognition of landmark image collections using iconic scene graphs. ECCV 2008.
- J.-M. Frahm et al. Building rome on a cloudless day. ECCV 2010.
- J. Heinly, et al. Reconstructing the world in six days. In CVPR, 2015, pages 3287–3295.
- J. L. Schonberger et al. Structure-from-motion revisited. CVPR2016.

Related works

Skeletal Graph

Find a subset of skeletal graphs from the image matching graph.

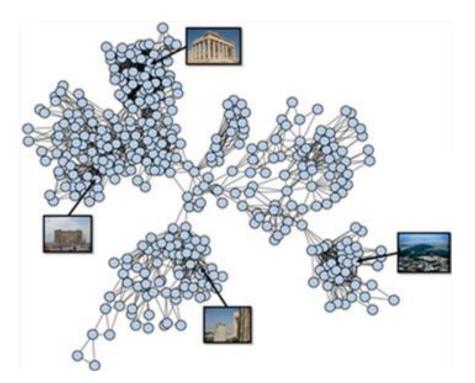


- Reconstructs the skeletal set, and adds the remaining images using pose.
- Drastically reduces the number of parameters that are considered, resulting in dramatic speedups.
- The skeletal image set approximates the coverage and robustness of the full set.
- Data discontinuity not solved

N. Snavely, et al. Skeletal graphs for efficient structure from motion. CVPR2008. S. Agarwal, et al. Building rome in a day. ICCV2009.

Preliminary

The matching graph



Two kinds of matching graphs:
The similarity matching graph *S*The difference matching graph *D*

$$s_{ij} = rac{n_{ij}}{n_i \cup n_j}$$
 weigth for $oldsymbol{s}$

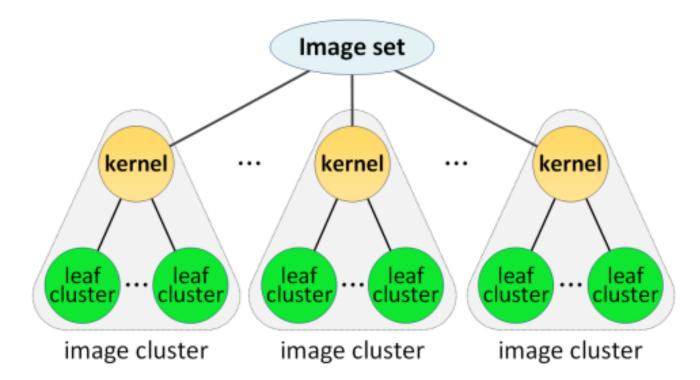
$$d_{ij} = 1 - s_{ij}$$
 weigth for **D**

An image matching graph is a weighted undirected graph. Each node represents an image, and an edge indicates scene overlap between two images.

Kun Sun, Wenbing Tao*, Multiple Starting Points Selection and Data Partitioning for Accurate, Efficient Structure from Motion. arXiv:1612.07153.

Preliminary

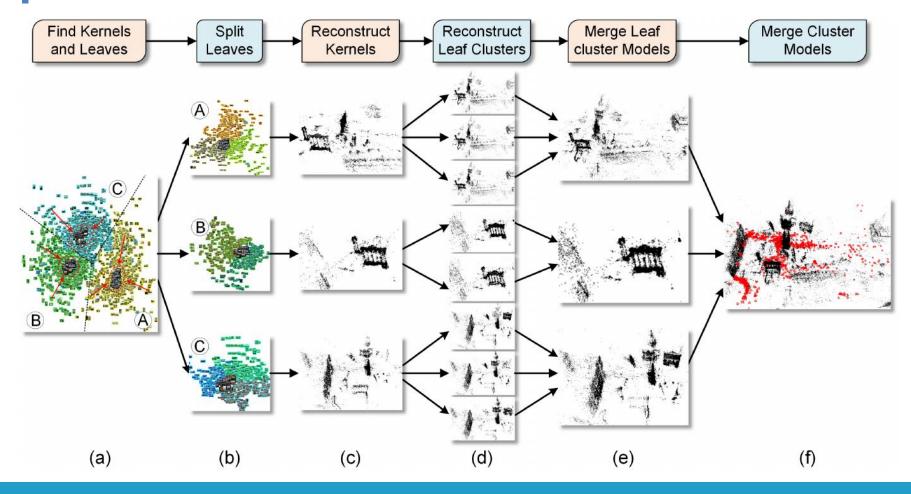
The trilaminar multiway reconstruction tree



The whole image set is partitioned into several image clusters. Each image cluster contains a kernel and several leaf clusters.

Overall Flowchart

The overall flowchart of the proposed method.



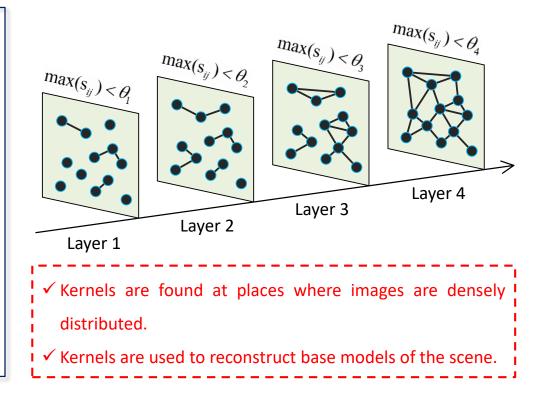
Key step 1: Finding Kernels

Adopt a greedy strategy to find kernels in a layered graph

 Compute a set of thresholds from

$$\theta_i = a + \frac{b-a}{1.5^{i-1}}, i \in 1, 2, \dots, k$$

- Divide the similarity matching graph S into k layers
- Find connected components in each layer
- Remove already found kernels from subsequent layers



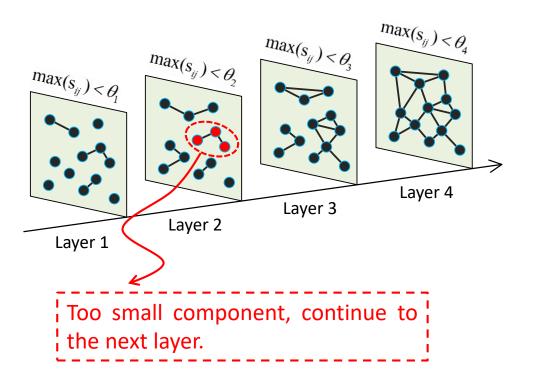
Key step 1: Finding Kernels

Adopt a greedy strategy to find kernels in a layered graph

 Compute a set of thresholds from

$$\theta_i = a + \frac{b-a}{1.5^{i-1}}, i \in 1, 2, \dots, k$$

- Divide the similarity matching graph S into k layers
- Find connected components in each layer
- Remove already found kernels from subsequent layers



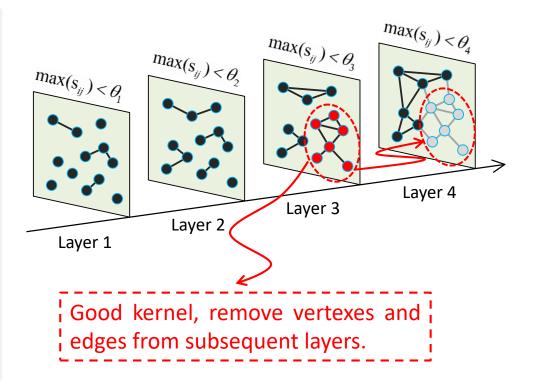
Key step 1: Finding Kernels

Adopt a greedy strategy to find kernels in a layered graph

 Compute a set of thresholds from

$$\theta_i = a + \frac{b-a}{1.5^{i-1}}, i \in 1, 2, \dots, k$$

- Divide the similarity matching graph S into k layers
- Find connected components in each layer
- Remove already found kernels from subsequent layers



Key step 2: Select An Exemplar Image

Select an exemplar image in each valid kernel

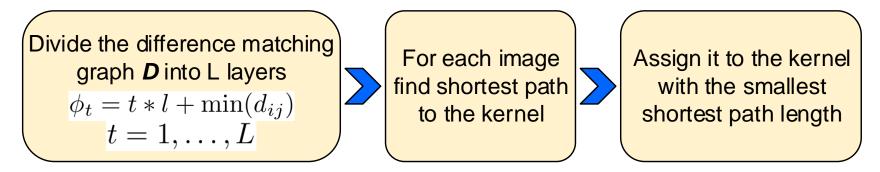
- The Affinity Propagation (AP) clustering algorithm is applied to images in each kernel.
- All the centers and their adjacent neighbors on the similarity graph are treated as the candidates for the exemplar image.
- Select the image with the highest score.

Average similarity with its neighbors of this vertex $\delta(v) = h_{deg}(v) + \beta_1 \cdot h_{sim}(v) + \beta_2 \cdot h_{ndeg}(v)$ The exemplar image will be used as the starting image in the reconstruction the reconstruction

Key step 3: Finding Image Clusters

Clustering images according to their optimal reconstruction path to the kernels

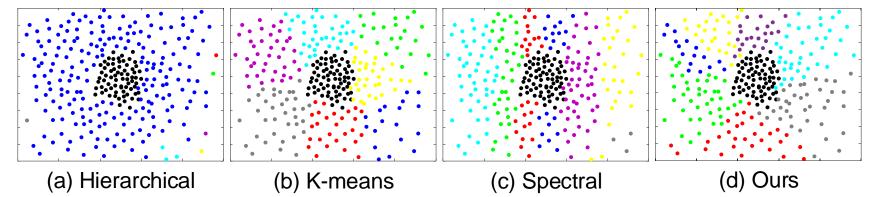
- Proposed the concept of optimal reconstruction path
 - large and equal overlapping
 - the maximum difference between adjacent images should be minimized
- □ Images are clustered by treating the kernels as centers.
- A Multi-layer Shortest Path (MSP) algorithm is proposed to find the optimal reconstruction paths from each image to the kernels.



Key step 4: Finding Leaf Clusters

Find Leaf Clusters using Radial Agglomerate Clustering

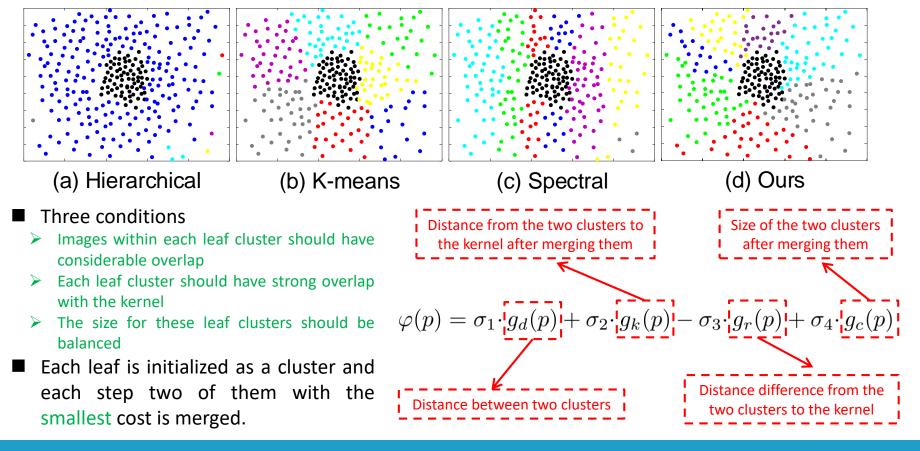
Leaves are split so that they can be reconstructed in parallel.



Key step 4: Finding Leaf Clusters

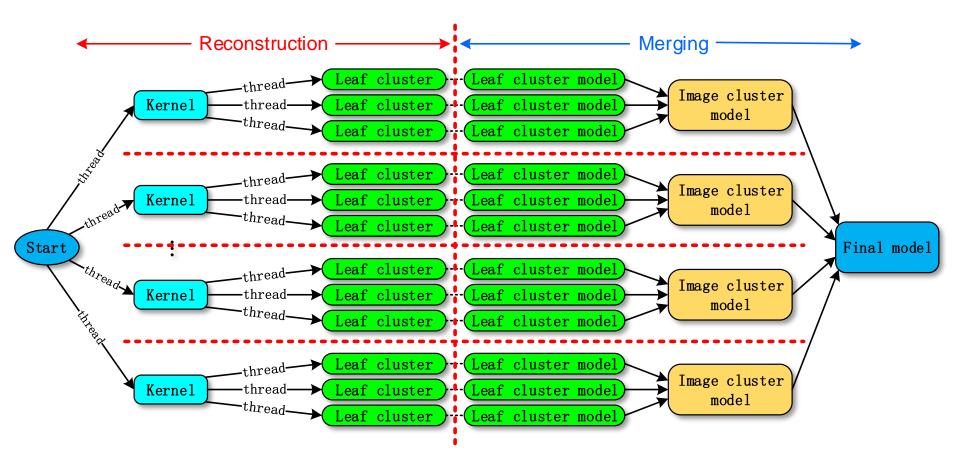
Find Leaf Clusters using Radial Agglomerate Clustering

Leaves are split so that they can be reconstructed in parallel.



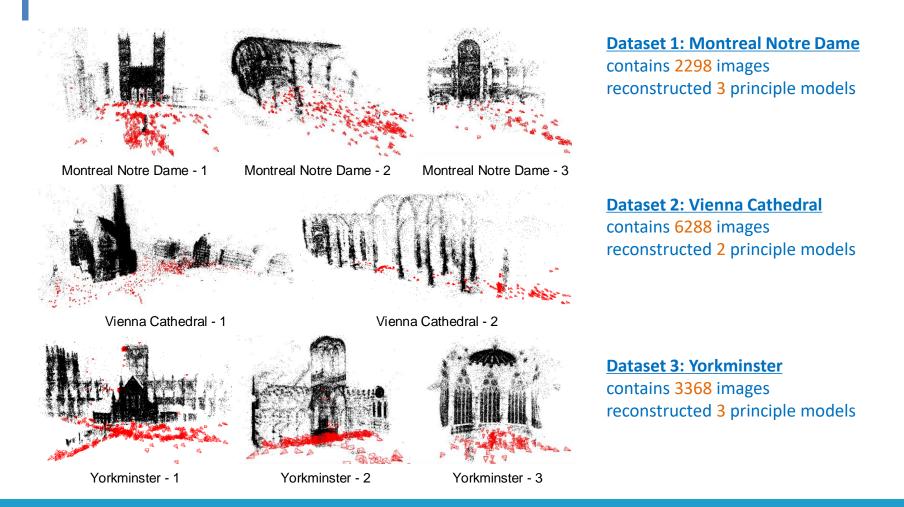
Key step 5: Parallel Reconstruction

Reconstruct kernels, leaf clusters and then merge them



Results on Public Available Datasets

Results on three large scale Internet datasets ranging from 2K~6K



Results on Public Available Datasets

Results on three large scale Internet datasets ranging from 2K~6K

Table 1. Partition result on the Montreal Notre Dame, Vienna Cathedral and Yorkminster image sets. For each dataset, the number of kernels, the number of leaf clusters belonging to a kernel and the time are given.

Dataset	Montreal Notre Dame Vienna Cathedral						Yorkminster						
Kernels	K 1	K 2	K 3	K 4	K1 K2 K3 K4 K5				K 1	K 2	K 3	K 4	
Num Leaf Clusters	3	2	1	1	3	1	1	1	2	1	1	1	1
Time		7.1	27s		33.107s				48.324s				

Table 2. Results on the Montreal Notre Dame, Vienna Cathedral and Yorkminster datasets. For each model, the number of reconstructed cameras and the mean reprojection error are given. The running time for reconstruction is in the last column.

Dataset	Method		#Cameras		I	l)	Time		
	01165	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3	271.20	
	Ours	385	355	97	0.6241	0.7286	0.5112	271.2s	
Montreal Notre Dame	VisualSFM	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3	457s	
	visualorivi	343	504	97	1.596	1.467	0.909		
	Bundler	-	399	-	-	1.5083	-	648.2s	
	Ours	Model 1		Model 2	Model 1		Model 2	337.4s	
	Ours	1000		292	0.6550		0.8684		
Vienna Cathedral	VisualSFM	Model 1		Model 2	Model 1		Model 2	1216s	
	visualorivi	929		275	1.901		1.519		
	Bundler	1197		-	0.7	106	-	12181.2s	
	Ours	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3	292.76	
	Ours	593	333	121	0.6935	0.5451	0.5905	282.7s	
Yorkminster	VisualSFM	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3	796s	
	VISUAISFIVI	517	128	106	1.429	0.639	0.664		
	Bundler	-	-	122	-	-	0.6265	209.3s	

Multi-View Stereo with Asymmetric Checkerboard Propagation

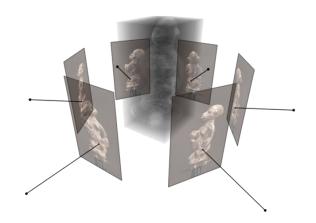
■ *Multi-View Stereo:* Given several calibrated images of the same object or scene, compute a dense representation of its 3D shape

Calibrated images:

Known camera parameters (robot arm, SfM) Arbitrary number of images

Dense representation:

Depth maps Point clouds Meshes Voxels



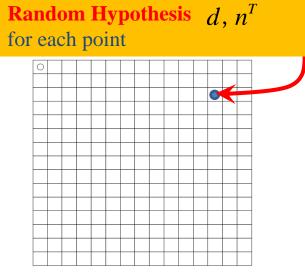
Related Works

Region Growing (PMVS[Furukawa2010])

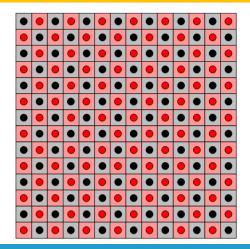
- Algorithm:
- (1) Initial feature matching (2) Patch expansion (3) Patch filtering
- Drawback:
- (1) Depend on initial feature matching
- (2) Hard to execute parallel for irregular patch expansion

Related Works

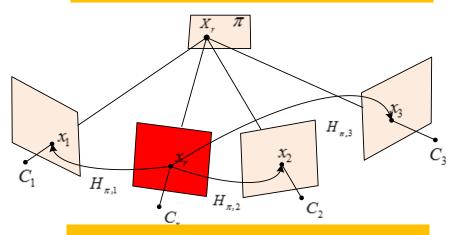
PatchMatch Stereo (Gipuma[Galliani15], COLMAP[Schonberger16])



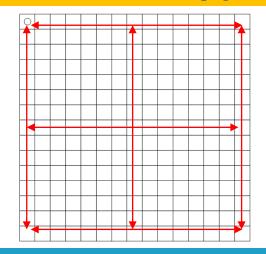
Gipuma: Checkerboard Pattern



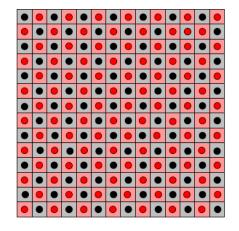
Multi-View homography Choose the optimal hypothesis

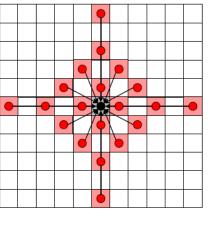


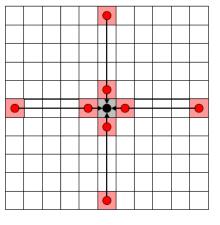
COLMAP: Serial Propagation



Asymmetric Checkerboard Propagation(AMHMVS)

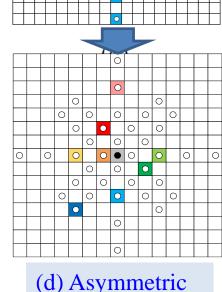






(a) (b) (c) Gipuma Symmetric Checkerboard Propagation

(a) The red-black checkerboard for updating the depth and normal of black pixels using the red pixels and vice versa.(b) The standard checkerboard diffusion-like propagation.(c) The fast checkerboard diffusion-like propagation.(d) Our proposed asymmetric checkerboard.

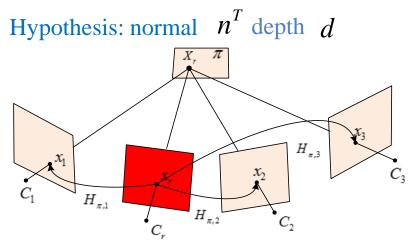


- Smooth region, hypothesis spread further
- Mutation region, hypothesis changes accordingly
- Hypothesis with high confidence spreads preferentially

Qingshan Xu, Wenbing Tao^{*}, Multi-View Stereo with Asymmetric Checkerboard Propagation and Multi-Hypothesis Joint View Selection, arXiv:1805.07920

Multi-Hypothesis Joint View Selection

Parameterization for scene space



Multi-view homography correspondence

Cost Matrix

$$M = \begin{bmatrix} m_{11} & m_{12} & L & m_{1N-1} \\ m_{21} & m_{22} & L & m_{2N-1} \\ M & M & O & M \\ m_{81} & m_{82} & L & m_{8N-1} \end{bmatrix}$$

More reliable hypothesis after our propagation scheme

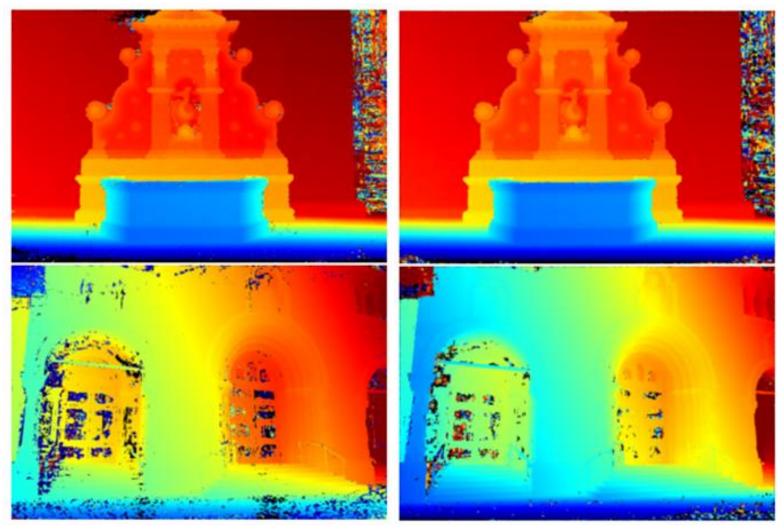
Heuristic View Selection $\tau_{mc}(t) = \tau_{mc_init} \cdot e^{-\frac{t^2}{\alpha}}, \psi(\chi^j) = \frac{1}{8} \sum_{i=1}^{8} C(m_{ij}) \checkmark C(m_{ij}) = e^{-\frac{m_{ij}^2}{2\beta^2}}$ $m_{final}(i) = \frac{\sum \psi_{mod}(\chi^z) \cdot m_{iZ}}{\sum \psi_{mod}(\chi^z)}$ M = SVD

Row: current optimal hypothesis selection **Column:** aggregation view inference & weight integration

The largest singular value corresponds the most informed aggregation views

Qingshan Xu, Wenbing Tao*, Multi-View Stereo with Asymmetric Checkerboard Propagation and Multi-Hypothesis Joint View Selection, arXiv:1805.07920

Strecha Dataset



Gipuma

Ours

ETH3D Benchmark (Schoeps et al., CVPR17, ETH Zurich)

Set: Test ▼	Metric	: F ₁ score	e [%] ▼ To	lerance:	1cm 🕶	Set: Test ▼	Metric	: F ₁ score	e [%] ▼ To	lerance: 2	2cm 👻
Method	Info	all ⊽	high-res multi-view ▼	indoor ⊽	outdoor ~	Method	Info	all ∀	high-res multi-view	indoor ∵	outdoor ~
AMHMVS		55.70 1	65.20 1	63.57 1	70.07 1	LTVRE		69.57 1	76.25 1	74.54 1	81.41 2
LTVRE		55.42 2	63.15 2	61.23 2	68.92 2	Andreas Kuhn, H	eiko Hirso	hmüller, Da	aniel Scharstei	n, Helmut M	layer: A T∨
Andreas Kuhn, Hei	iko Hirso					AMHMVS		67.68 2	75.89 2	73.93 2	81.77 1
COLMAP_ROB	C	52.97 <mark>3</mark>	61.27 3	58.81 <mark>3</mark>	68.64 <mark>3</mark>	COLMAP_RO	3 <u>C</u>	66.92 <mark>3</mark>	73.01 3	70.41 <mark>3</mark>	80.81 <mark>3</mark>
Johannes L. Schör	nberger,	Enliang Zh	eng, Marc Poll	efeys, Jan-I	Michael Fra	Johannes L. Schö	önberger,	Enliang Zh	eng, Marc Poll	efeys, Jan-I	Vichael Fra
CMPMVS	В	42.80 4	57.81 4	55.97 <mark>4</mark>	63.32 4	CMPMVS	В	51.72 4	70.19 4	68.16 4	76.28 4
M. Jancosek, T. Pa	ajdla: Mu	ılti-View Re	construction P	reserving W	/eakly-Supp	M. Jancosek, T. F	Pajdla: Mu	ulti-View Re	construction Pr	reserving W	eakly-Supp
PMVS	C	28.69 <mark>5</mark>	36.22 <mark>5</mark>	33.29 <mark>5</mark>	45.02 6	Gipuma	C		45.18 5	41.86 <mark>5</mark>	55.16 7
Y. Furukawa, J. Po	nce: Ac	curate, den	se, and robust	multiview s	tereopsis. P	S. Galliani, K. Las	singer, K.	Schindler:	Massively Para	Ilel Multivie	w Stereops
Gipuma	С		34.77 6	31.91 <mark>6</mark>	43.33 7	PMVS	C	37.38 <mark>5</mark>	44.16 6	40.28 <mark>6</mark>	55.82 <mark>6</mark>
S. Galliani, K. Lasi	nger, K.	Schindler:	Massively Para	Illel Multivie	w Stereops	Y. Furukawa, J. P	once: Ac	curate, den	se, and robust	multiview s	tereopsis. F
MVE	P	17.77 6	21.41 7	17.77 7	32.34 8	MVE	Р	26.22 6	30.37 7	25.89 7	43.81 8
Simon Fuhrmann,	Fabian l	Langguth, N	lichael Goesel	e: MVE - A	Multi-View I	Simon Fuhrmann	, Fabian I	Langguth, N	lichael Goesel	e: MVE - A	Multi-View

T. Schoeps, J. Schoenberger, S. Galliani, T. Sattler, K. Schindler, A. Geiger, M. Pollefeys, <u>A Multi-View Stereo Benchmark</u> with High-Resolution Images and Multi-Camera Videos in Unstructured Scenes, CVPR 2017

ETH3D Benchmark (Schoeps et al., CVPR17, ETH Zurich)

Set: Test - N	letric	: F ₁ score	e [%] •	То	lerance: {	5cm 🗸
Method	Info	all ⊽	high- multi-vi		indoor ∵	outdoor ~
LTVRE		82.13 1	86.2	6 1	84.90 1	90.34 <mark>2</mark>
Andreas Kuhn, Heiko	o Hirs	hmüller, D	aniel Scha	rstei	n, Helmut M	layer: A TV
AMHMVS		80.38 3	85.3	62	83.68 2	90.39 1
COLMAP_ROB	C	80.39 <mark>2</mark>	83.9	63	82.04 <mark>3</mark>	89.74 <mark>3</mark>
Johannes L. Schönb	erger,	Enliang Zh	neng, Marc	Pol	efeys, Jan-I	Michael Fra
CMPMVS	В	59.16 4	80.5	24	79.20 4	84.48 4
M. Jancosek, T. Pajd	la: Mu	ulti-View Re	constructi	on Pi	reserving W	eakly-Supp
Gipuma	C		57.9	9 5	54.91 <mark>5</mark>	67.24 <mark>6</mark>
S. Galliani, K. Lasing	jer, K.	Schindler:	Massively	Para	allel Multivie	w Stereops
PMVS	C	47.18 5	52.2	2 6	48.46 <mark>6</mark>	63.48 <mark>7</mark>
Y. Furukawa, J. Pono	e: Ac	curate, den	ise, and ro	bust	multiview s	tereopsis. F
MVE	Р	39.65 <mark>6</mark>	43.3	97	38.59 7	57.77 8
Simon Fuhrmann, Fa	abian I	Langguth, I	Michael Go	esel	e: MVE - A	Multi-View

Set: Test -	Metric	: F ₁ score [%] - T			olerance: 10cm -			
Method	Info	ali ⊽	high- multi-v		indoor ⊽	outdoor ~		
LTVRE		88.41 1	90.9	99 1	89.92 1	94.19 1		
Andreas Kuhn, He	iko Hirs	hmüller, D	aniel Scha	arstei	n, Helmut M	layer: A TV		
AMHMVS		87.59 3	90.5	53 2	89.42 2	93.87 2		
COLMAP_ROB	C	87.81 <mark>2</mark>	90.4	40 3	89.28 <mark>3</mark>	93.79 <mark>3</mark>		
Johannes L. Schö	nberger,	Enliang Zh	eng, Mar	: Pol	efeys, Jan-I	Vichael Fra		
CMPMVS	В	62.92 4	85.6	62 4	84.92 <mark>4</mark>	87.74 4		
M. Jancosek, T. Pa	ajdla: Mu	ulti-View Re	construct	ion Pi	reserving W	eakly-Supp		
Gipuma	C		67.8	36 <mark>5</mark>	65.41 <mark>5</mark>	75.18 <mark>6</mark>		
S. Galliani, K. Lasi	inger, K.	Schindler:	Massively	Para	allel Multivie	w Stereops		
PMVS	C	53.92 <mark>5</mark>	58.5	58 6	55.40 <mark>6</mark>	68.12 7		
Y. Furukawa, J. Po	once: Ac	curate, den	se, and ro	bust	multiview st	tereopsis. P		
MVE	P	50.73 <mark>6</mark>	53.2	25 7	48.81 7	66.58 8		
Simon Fuhrmann,	Fabian	Langguth, N	vichael G	oesel	e: MVE - A	Multi-View F		

T. Schoeps, J. Schoenberger, S. Galliani, T. Sattler, K. Schindler, A. Geiger, M. Pollefeys, <u>A Multi-View Stereo Benchmark</u> with High-Resolution Images and Multi-Camera Videos in Unstructured Scenes, CVPR 2017

ETH3D Benchmark (Schoeps et al., CVPR17, ETH Zurich)

Set: Test - N	/letric	: F ₁ score	e [%] •	lerance: 20cm -		
Method	Info	all ⊽	high- multi-v		indoor ∵	outdoor ~
COLMAP_ROB	C	93.27 1	95.3	33 1	94.87 1	96.71 1
Johannes L. Schönt	perger	Enliang Zh	eng, Maro	: Polle	feys, Jan-I	Vichael Fra
LTVRE		92.95 <mark>2</mark>	94.6	60 2	93.90 <mark>3</mark>	96.68 <mark>2</mark>
Andreas Kuhn, Heik	o Hirs	hmüller, D	aniel Scha	arsteir	, Helmut N	layer: A TV
AMHMVS		92.88 3	94.5	55 3	93.95 <mark>2</mark>	96.34 <mark>3</mark>
CMPMVS	В	66.06 4	89.7	70 4	89.67 4	89.78 4
M. Jancosek, T. Pajo	dla: Mi	ulti-View Re	constructi	on Pr	eserving W	eakly-Supp
Gipuma	С		78.4	40 5	76.75 <mark>5</mark>	83.38 <mark>5</mark>
S. Galliani, K. Lasin	ger, K.	Schindler:	Massively	Para	llel Multivie	w Stereops
PMVS	С	61.03 <mark>6</mark>	65.9	95 6	63.57 <mark>6</mark>	73.09 <mark>8</mark>
Y. Furukawa, J. Pon	ce: Ac	curate, den	se, and ro	bust	multiview s	tereopsis. F
MVE	Ρ	62.14 5	63.2	28 7	59.38 <mark>7</mark>	74.99 <mark>7</mark>
Simon Fuhrmann, F	abian	Langguth, M	lichael G	oesele	e: MVE - A	Multi-View

Set: Test ▼	Metric	: F ₁ score	e [%] •	erance: 50cm -		
Method	Info	all ⊽	high- multi-v		indoor 	outdoor ~
COLMAP_RO	BC	97.56 1	98.8	86 1	98.75 1	99.17 1
Johannes L. Sch	önberger,	Enliang Zh	eng, Maro	: Polle	feys, Jan-N	/lichael Frah
AMHMVS		97.28 2	98.1	10 2	97.99 <mark>2</mark>	98.44 <mark>2</mark>
LTVRE		97.16 <mark>3</mark>	98.0)2 3	97.90 <mark>3</mark>	98.40 <mark>3</mark>
Andreas Kuhn, H	leiko Hirs	hmüller, Da	aniel Scha	arsteir	, Helmut M	ayer: A TV I
CMPMVS	В	69.68 <mark>6</mark>	94.1	13 4	94.90 4	91.84 <mark>5</mark>
M. Jancosek, T.	Pajdla: Mu	ulti-View Re	constructi	on Pr	eserving W	eakly-Suppo
Gipuma	C		90.9	99 5	90.15 <mark>5</mark>	93.51 4
S. Galliani, K. La	singer, K.	Schindler:	Massively	Para	llel Multivie	w Stereopsi
MVE	P	76.82 4	76.9	91.6	74.31 7	84.70 <mark>6</mark>
Simon Fuhrmann	n, Fabian	Langguth, N	/lichael G	oesele	e: MVE - A	Multi-View F
PMVS	C	70.75 <mark>5</mark>	75.9	98 7	74.97 <mark>6</mark>	79.01 8
Y. Furukawa, J. F	Ponce: Ac	curate, den	se, and ro	bust i	multiview st	tereopsis. P/

T. Schoeps, J. Schoenberger, S. Galliani, T. Sattler, K. Schindler, A. Geiger, M. Pollefeys, <u>A Multi-View Stereo Benchmark</u> with High-Resolution Images and Multi-Camera Videos in Unstructured Scenes, CVPR 2017

Tanks and Temples Dataset (Knapitsch, et al., SIGGRAPH2017, Intel)

Intermediate 👻

Advanced -

Intermediate F-score

method	rank	mean	runtime*	Family	Francis	Horse	Lighthouse	M60	Panther	Playground	Train
AMHMVS	1.12	54.82	N.A.	69.99	49.45	45.12	59.04	52.64	52.37	58.34	51.61
MVSNet	3.88	43.48	N.A.	55.99	28.55	25.07	50.79	53.96	50.86	47.90	34.69
Pix4D	4.12	43.24	N.A.	64.45	31.91	26.43	54.41	50.58	35.37	47.78	34.96
COLMAP	4.50	42.14	N.A.	50.41	22.25	25.63	56.43	44.83	46.97	48.53	42.04
OpenMVG + OpenMVS	4.62	41.71	N.A.	58.86	32.59	26.25	43.12	44.73	46.85	45.97	35.27
MVSNet_full	6.12	39.74	N.A.	51.19	26.73	20.08	47.02	49.79	46.94	44.21	31.98
MVSNet_without_refinement	6.88	38.56	N.A.	50.11	24.18	20.92	44.55	49.23	46.32	43.21	29.98
OpenMVG + MVE	7.00	38.00	N.A.	49.91	28.19	20.75	43.35	44.51	44.76	36.58	35.95
OpenMVG + SMVS	11.38	30.67	N.A.	31.93	19.92	15.02	39.38	36.51	41.61	35.89	25.12
OpenMVG-G + OpenMVS	11.88	22.86	N.A.	56.50	29.63	21.69	6.55	39.54	28.48	0.00	0.53
MVE	12.25	25.37	N.A.	48.59	23.84	12.70	5.07	39.62	38.16	5.81	29.19
OpenMVG + PMVS	12.88	29.66	N.A.	41.03	17.70	12.83	36.68	35.93	33.20	31.78	28.10
Theia-I + OpenMVS	13.00	27.93	N.A.	48.11	19.38	20.66	30.02	30.37	30.79	23.65	20.46
VisualSfM + PMVS	13.62	27.80	N.A.	38.02	12.93	11.30	41.75	35.47	34.19	35.47	13.26
VisualSfM + OpenMVS	14.00	24.45	N.A.	49.10	21.38	18.59	25.24	27.02	24.64	16.59	13.07
MVE + SMVS	14.50	24.09	N.A.	30.42	16.64	10.44	39.16	34.35	37.90	2.40	21.44
Theia-G + OpenMVS	14.88	23.43	N.A.	47.95	19.52	19.56	28.90	16.25	21.54	23.45	10.24
VisualSfM + CMPMVS	15.12	22.40	N.A.	35.41	14.11	14.71	37.75	12.02	24.29	27.26	13.62
Bundler + PMVS	18.25	12.86	N.A.	16.91	4.34	3.82	22.49	23.80	21.54	0.53	9.42

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun , <u>Tanks and Temples: Benchmarking Large-</u> <u>Scale Scene Reconstruction</u>, SIGGRAPH 2017

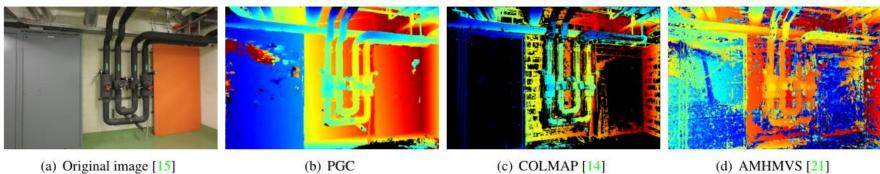
Futhermore

Our new method (PGC)

Evaluation on ETH3D training dataset:

Tolerance	Method	high-res multi-view	indoor	outdoor
1.cm	AMHMVS	58.24	59.56	56.70
1cm	PGC	64.12	64.69	63.45
Jem	AMHMVS	70.71	70.00	71.54
2cm	PGC	75.82	74.30	77.58

Depth maps:



(a) Original image [15]

(c) COLMAP [14]

(d) AMHMVS [21]

Thank you!