Low-rank modeling for data representation

Chong Peng

College of Science and Technology, Qingdao University

May 16, 2018

Chong Peng (QDU)

VALSE Webinar

May 16, 2018 1 / 66

Introduction

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Robust Principal Component Analysis

• PCA

$$\min_{\operatorname{rank}(A) \le r} \|X - A\|_F^2.$$
(1)

Robust PCA

$$\min_{A,S} \|A\|_* + \lambda \|S\|_1, \quad s.t. \quad X = A + S.$$
(2)

Candes et al., Robust Principal Component Analysis? J. ACM, 2011.

Chong Peng (QDU)

Robust Principal Component Analysis

In a surveillance video, the background forms a low-rank part while the moving objects form a sparse part.

VALSE Webinar

$$\min_{L,S} \|L\|_* + \lambda \|S\|_1, \quad s.t. \quad X = L + S.$$
(3)

The nuclear norm is not accurate for matrices with large singular values!

$$\|L\|_{Id} = \log \det(I + (Z^T Z)^{1/2}) = \sum_i \log(1 + \sigma_i(L))$$
(4)

$$\min_{L,S} \|L\|_{ld} + \lambda \|S\|_1, \quad s.t. \quad X = L + S.$$
(5)

Robust Principal Component Analysis

Fast factorization-based approach:

 $\min_{C,S,U,V} \|C\|_{ld} + \lambda \|S\|_{1}, \quad s.t. \quad X = UCV^{T} + S, U^{T}U = I_{r}, V^{T}V = I_{r}.$ (6)

Nonconvex: factorization, nonconvex rank approximation

Peng et al., A fast factorization-based approach to robust PCA, ICDM 2016.

Robust Principal Component Analysis

- Background-foreground separation: In a surveillance video, the background usually forms a low-rank part while the moving foreground forms a sparse part.
- Shadow removal from face images: In a set of face images from the same person, the face usually forms a low-rank part wile the shadow forms a sparse part.
- Anomaly detection: In a set of handwritten digits, the majority number forms a low-rank part while the anomaly forms a sparse part.
- Denoising of hyperspectral images: In hyperspectral images, the ground truth image forms a low-rank part while the noise forms a sparse part.

Foreground-background Separation

Figure 1: Foreground-background separation in the Highway video. The top left is the original frame and the rest are extracted background (top) and foreground (bottom).

Foreground-background Separation

Data	Method	Rank(<i>L</i>)	$\ S\ _0/(dn)$	$\frac{\ X-L-S\ _F}{\ X\ _F}$	# of Iter.	# of SVDs	Time
	AltProj	1	0.9331	2.96e-4	37	38	49.65
Highway	IALM	539	0.8175	6.02e-4	12	13	269.10
	F-FFP	1	0.8854	5.74e-4	24	24	14.83
Eccelator	AltProj	1	0.9152	2.29e-4	40	41	110.75
Airport	IALM	957	0.7744	7.76e-4	11	12	1,040.91
Airport	F-FFP	1	0.8877	5.45e-4	23	23	30.78
	AltProj	1	0.8590	5.20e-4	35	36	44.64
PETS2006	IALM	293	0.8649	5.63e-4	12	13	144.26
	F-FFP	1	0.8675	5.61e-4	24	24	14.33
Shonning	AltProj	1	0.9853	3.91e-5	45	46	45.35
Mall	IALM	328	0.8158	9.37e-4	11	12	123.99
IVIAII	F-FFP	1	0.9122	7.70e-4	23	23	11.65

Table 1: Results with r Known for Datasets with Single Background

For IALM and AltProj, (partial) SVDs are for $d \times n$ matrices. For F-FFP, SVDs are for $n \times k$ matrices, which are computationally far less expensive than those required by IALM and AltProj.

Foreground-background Separation

Figure 2: Foreground-background separation in the Light Switch-2 video. The top and bottom two panels correspond to two frames, respectively. For each frame, the top left is the original image while the rest are the extracted background (top) and foreground (bottom), respectively.

Data	Method	Rank(<i>L</i>)	$\ S\ _0/(dn)$	$\frac{\ X-L-S\ _F}{\ X\ _F}$	# of lter.	$\# \mbox{ of SVDs}$	Time
	AltProj	2	0.9243	1.88e-4	39	41	47.32
Lobby	IALM	223	0.8346	6.19e-4	12	13	152.54
	F-FFP	2	0.8524	6.42e-4	24	24	15.20
Light	AltProj	2	0.9050	2.24e-4	47	49	87.35
Switch 2	IALM	591	0.7921	7.93e-4	12	13	613.98
Switch-2	F-FFP	2	0.8323	7.54e-4	24	24	24.12
Camora	AltProj	2	0.8806	5.34e-4	47	49	84.99
Darameter	IALM	607	0.7750	6.86e-4	12	13	433.47
I didilicici	F-FFP	2	0.8684	6.16e-4	24	24	22.25
Time Of	AltProj	2	0.8646	4.72e-4	44	46	61.63
Day	IALM	351	0.6990	6.12e-4	13	14	265.87
Day	F-FFP	2	0.8441	6.81e-4	25	25	18.49

Table 2:	Results with	r Known	for Datasets	with	Multiple	Backgrounds
----------	--------------	---------	--------------	------	----------	-------------

For IALM and AltProj, (partial) SVDs are for $d \times n$ matrices. For F-FFP, SVDs are for $n \times k$ matrices, which are computationally far less expensive than those required by IALM and AltProj.

Image: A matrix of the second seco

Shadow Removal from Face Images

Table 3: Recovery Results of Face Data with k = 1

Data	Method	Rank(Z)	$\ S\ _0/(dn)$	$\frac{\ X-Z-S\ _F}{\ X\ _F}$	# of lter.	$\# \ {\rm of} \ {\rm SVDs}$	Time
	AltProj	1	0.9553	8.18e-4	50	51	4.62
Subject 1	IALM	32	0.7745	6.28e-4	25	26	2.43
	F-FFP	1	0.9655	8.86e-4	36	36	1.37
	AltProj	1	0.9755	2.34e-4	49	50	5.00
Subject 2	IALM	31	0.7656	6.47e-4	25	26	2.66
	F-FFP	1	0.9492	9.48e-4	36	36	1.37

Figure 3: Shadow removal results from EYaleB data. For each of the two parts, the top left is the original image and the rest are recovered clean image (top) and shadow (bottom) by (1) IALM, (2) AltProj, and (3) F-FFP, respectively.

Shadow Removal from Face Images

Table 4: Recovery Results of Face Data with k = 5

Data	Method	Rank(Z)	$\ S\ _0/(dn)$	$\frac{\ X-Z-S\ _F}{\ X\ _F}$	# of lter.	$\# \ {\rm of} \ {\rm SVDs}$	Time
Subject 1	AltProj	5	0.9309	3.93e-4	51	55	6.08
Subject 1	U-FFP	5	0.9632	9.01e-4	36	36+36	1.44
Subject 2	AltProj	5	0.8903	6.40e-4	54	58	7.92
Subject 2	U-FFP	1	0.9645	5.85e-4	37	37+37	1.53

Figure 4: Shadow removal results from EYaleB data. The top panel are the recovered clean image and the bottom panel are the shadows by (1) AltProj (k=5) and (2) U-FFP, respectively.

Anomaly Detection

Figure 5: Selected '1's and '7's from USPS dataset.

Chong Peng (QDU)

VALSE Webinar

May 16, 2018 14 / 66

Anomaly Detection

Figure 6: ℓ_2 -norms of each row of *S*.

Figure 7: Written '1's and outliers identified by F-FFP.

Chong Peng (QDU)

VALSE Webinar

May 16, 2018 15 / 66

Denoising of HSI

(a) Original

(b) Noisy

(c) VBM3D

(d) LRMR

(e) NAILRMA

(f) WSN-LRMA

(g) NonLRMA

Figure 8: Restoration results on synthetic data: Washington DC Mall. (a) Original image. (b) Noisy image. The resorted image obtained by (c) VBM3D, (d) LRMR, (e) NAILRMA, (f) WSN-LRMA, and (g) U-FFP.

Denoising of HSI

(a) Original

(b) VBM3D

(c) LRMR

(d) NAILRMA

(e) WSN-LRMA

(f) NonLRMA

Figure 9: Restoration results on HYDICE urban data set: severe noise band. (a) Original image located at the 108th band. Resorted image obtained by (b) VBM3D, (c) LRMR, (d) NAILRMA, (e) WSN-LRMA, and (f) NonLRMA.

Scabality

Figure 10: Time cost of F-FFP changes with respect to dimension and sample size of the data.

э.

Multiple Subspaces

PCA/RPCA recover a single subspace. But data may have multiple subspaces...

Rather than uniformally distributed in the high-dimensional space, high-dimensional data often come from a union of low-dimensional subspaces, i.e., high-dimensional data often have low-dimensional structures.

Can we exploit low-dimensional structures?

- Iterative Methods: K-subspace, q-flat
- Algebraic Methods: matrix factorization based, generalized PCA, robust algebraic segmentation
- Statistical Methods: mixture of probabilistic PCA, agglomerative lossy compression, random sample consensus
- Spectral Clustering-Based Methods: factorization-based affinity, GPCA-based affinity, local-subspace based affinity, locally linear manifold clustering ...

Vidal, Subspace Clustering, IEEE Signal Processing Magzine, 2011.

Sparse subspace clustering

• Sparse Representation:

$$\min_{z} \|z\|_{0} \quad s.t. \quad x = Az. \tag{7}$$

• Sparse subspace clustering: self-expressiveness of the data

$$\min_{z} \|z\|_{0} \quad s.t. \quad x_{i} = Xz_{i}, z_{ii} = 0.$$
(8)

or

$$\min_{Z} \|Z\|_{0} \quad s.t. \quad X = XZ, \operatorname{diag}(Z) = 0. \tag{9}$$

$$\min_{Z} \|Z\|_{1} \quad s.t. \quad X = XZ, \operatorname{diag}(Z) = 0. \tag{10}$$

VALSE Webinar

Elhamifar and Vidal, Sparse Subspace Clustering, CVPR 2009.

Low-rank Representation

Chong Peng (QDU)

VALSE Webinar

May 16, 2018 25 / 66

Liu et al., Robust Subspace Segmentation by Low-Rank Representation, ICML 2010. Liu et al., Robust Recovery of Subspace Structures by Low-Rank Representation, IEEE T. PAMI, 2013.

Low-rank Representation

The nuclear norm is not accurate for rank approximation.

$$\min_{Z} \log \det(I + Z^{T}Z) + \lambda \|S\|_{1} + \gamma \|E\|_{F}^{2} \quad s.t. \quad X = XZ + S + E.$$
(12)

Here
$$\log \det(I + Z^T Z) = \sum_i \log(1 + \sigma_i^2(Z))$$
 (13)

Peng et al., Subspace clustering using log-determinant rank approximation, KDD 2015.

SSC and LRR eliminates the noise effects from the data, where some prior knowledge is required.

$$\min_{z_i} \|x_i - X_{\hat{i}} z_i\|_2^2 + \lambda \|z_i\|_2^2$$
(14)

where

$$X_{\hat{i}} = [x_1, x_2, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n].$$
(15)

OR

$$\min_{Z} \|X - XZ\|_{F}^{2} + \lambda \|Z\|_{F}^{2}, \quad s.t. \quad \text{diag}(Z) = 0.$$
(16)

TRR eliminates the noise effect by thresholding small values in Z.

Peng et al., Robust subspace clustering via thresholding ridge regression, AAAI 2015.

Variance Regularized Ridge Regression

Existing methods usually convert 2D data to vectorial (1-dimensional) data!

2-dimensional (2D) data means that each example is a 2D matrix. Examples:

- A gray image is a matrix;
- Each frame of a video sequence;
- A user-item in recommender system is changing over time;
- A community in a social network is changing over time;
- There is often a need to partition a scene into multiple segments;
- Satellite images bring daily weather reports and provide farmers with information for precision agriculture;
- Real estate sales use geographic information systems.

Spatial information identifies the geographical location of the features and reveals the inherent structures of the data.

Why not tensor method?

- For candecomp/parafac (CP) decomposition based methods, it is generally NP-hard to compute the CP rank;
- Tucker decomposition is not unique;
- The application of a core tensor and a high-order tensor product would incur information loss of spatial details;
- Tensor computation and methods usually involve flattening and folding operations, which, more or less, have issues similar to those of vectorization operation and thus might not fully exploit the true structures of the data.

Image: Image:

Lu et al., Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization, CVPR 2016.

Kolda et al., Tensor decompositions and applications, SIAM Review, 2009.

Letexier et al., Noise removal from hyperspectral images by multidimensional filtering, IEEE T-GRS, 2008

2-Dimensional Features

Chong Peng (QDU)

VALSE Webinar

May 16, 2018 32 / 66

2-Dimensional Projections

Chong Peng (QDU)

VALSE Webinar

May 16, 2018 33 / 66

Construct the coefficients for low-dimensional representation with projected data:

$$\min_{Z,P^{T}P=I_{r}}\sum_{i=1}^{n}\left\|X_{i}P-\sum_{j=1}^{n}z_{ji}X_{j}P\right\|_{F}^{2}+\tau\|Z\|_{F}^{2}+\gamma_{1}\mathrm{Tr}(P^{T}G_{P}P),\qquad(17)$$

where G_P is inverse of 2D covariance matrix of X_i 's.

Variance Regularized Ridge Regression (VR3)

VALSE Webinar

May 16, 2018 35 / 66

Preserve spatial information by seeking projection directions from both horizontal and vertical directions:

$$\min_{Z,P^{T}P=I_{r},Q^{T}Q=I_{r}}\sum_{i=1}^{n}\left\|X_{i}P-\sum_{j=1}^{n}z_{ji}X_{j}P\right\|_{F}^{2}+\gamma_{1}\mathrm{Tr}(P^{T}G_{P}P)+\tau\|Z\|_{F}^{2}$$

$$+\sum_{i=1}^{n}\left\|X_{i}^{T}Q-\sum_{j=1}^{n}z_{ji}X_{j}^{T}Q\right\|_{F}^{2}+\gamma_{2}\mathrm{Tr}(Q^{T}G_{Q}Q),$$

$$(18)$$

where G_Q is inverse of 2D covariance matrix of X_j^T 's.

Optimization-Q

The subproblem of optimizing Q is

$$\min_{Q^{T}Q=I_{r}}\sum_{i=1}^{n}\left\|X_{i}^{T}Q-\sum_{j=1}^{n}z_{ji}X_{j}^{T}Q\right\|_{F}^{2}+\gamma_{2}\mathrm{Tr}(Q^{T}G_{Q}Q).$$
 (19)

Theorem 1

Define $F_1 = \sum_{i=1}^n X_i X_i^T$, $F_2 = \sum_{i=1}^n \sum_{j=1}^n z_{ji} X_i X_j^T$, and $F_3 = \sum_{i=1}^n \sum_{j=1}^n z_{(i)} z_{(j)}^T X_i X_j^T$. The problem of (19) is a constrained quadratic optimization, and admits a closed-form solution,

$$eig_r(F_1 - 2F_2 + F_3 + \gamma_2 G_Q),$$
 (20)

where $F_1 - 2F_2 + F_3 + \gamma G_Q$ is positive definite and $eig_r(F)$ returns eigenvectors of F associated with its r smallest eigenvalues.

イロト 不得下 イヨト イヨト 二日

The subproblem of optimizing P is

$$\min_{P^{T}P=I_{r}} \sum_{i=1}^{n} \left\| X_{i}P - \sum_{j=1}^{n} z_{ji}X_{j}P \right\|_{F}^{2} + \gamma_{1}\operatorname{Tr}(P^{T}G_{P}P).$$
(21)

Theorem 2

Define $H_1 = \sum_{i=1}^n X_i^T X_i$, $H_2 = \sum_{i=1}^n \sum_{j=1}^n z_{ji} X_i^T X_j$, and $H_3 = \sum_{i=1}^n \sum_{j=1}^n z_{(i)} z_{(j)}^T X_i^T X_j$. The problem of (21) is a constrained quadratic optimization and admits a closed-form solution,

$$\mathbf{eig}_r(H_1 - 2H_2 + H_3 + \gamma_1 G_P), \tag{22}$$

where $H_1 - 2H_2 + H_3 + \gamma_1 G_P$ is positive definite.

The subproblem of optimizing Z is

$$\min_{Z} \sum_{i=1}^{n} \left\| X_{i}P - \sum_{j=1}^{n} z_{ji}X_{j}P \right\|_{F}^{2} + \sum_{i=1}^{n} \left\| X_{i}^{T}Q - \sum_{j=1}^{n} z_{ji}X_{j}^{T}Q \right\|_{F}^{2} + \tau \|Z\|_{F}^{2}.$$
(23)

We define a matrix ${\mathcal K}$ with

$$\mathcal{K}_{ij} = \mathsf{Tr}(P^{\mathsf{T}}(X_i^{\mathsf{T}}X_j)P) + \mathsf{Tr}(Q^{\mathsf{T}}(X_iX_j^{\mathsf{T}})Q),$$

then it is seen that (23) admits a closed-from solution:

$$Z = (\mathcal{K} + \tau I_n)^{-1} \mathcal{K}.$$
 (24)

Theorem 3

Denoting the objective function of (18) by $\mathcal{J}(Q, P, Z)$, under the updating rules of (20), (22) and (24), the value sequence of the objective function $\{\mathcal{J}(Q^k, P^k, Z^k)\}_{k=1}^{\infty}$ is non-increasing and converges, where k denotes the iteration number.

To further account for nonlinear relationships of the data, we try to ensure the smoothness between linear and nonlinear spaces on manifold:

$$\min_{Z,P^{T}P=I_{r},Q^{T}Q=I_{r}} \mathcal{J}(Q,P,Z) \underbrace{+\eta_{1}\mathrm{Tr}(ZL_{P}Z^{T}) + \eta_{2}\mathrm{Tr}(ZL_{Q}Z^{T})}_{\text{Learning on manifold}},$$
(25)

where L_P and L_Q are constructed using projected data $X_i PP^T$ and $QQ^T X_i$, respectively.

• Fully connected graphs: $[W_P]_{ij} = \operatorname{Tr}((X_i P)^T (X_j P)) \text{ and } [W_Q]_{ij} = \operatorname{Tr}((X_i^T Q)^T (X_i^T Q)).$

Optimiation-Q

The subproblem for Q-minimization is

$$\min_{Q^{T}Q=I_{r}}\sum_{i=1}^{n}\left\|X_{i}^{T}Q-\sum_{j=1}^{n}z_{ji}X_{j}^{T}Q\right\|_{F}^{2}+\gamma_{2}\mathrm{Tr}(Q^{T}G_{Q}Q)+\eta_{2}\mathrm{Tr}(ZL_{Q}Z^{T}).$$
(26)

Theorem 4

Define $F_4 = \sum_{i=1}^n \sum_{j=1}^n ||z_i - z_j||_2^2 X_i X_j^T$. Given that Z is bounded, the problem in (26) is a constrained quadratic optimization, and admits a closed-form solution,

$$\mathbf{eig}_{r}\left(F_{1}-2F_{2}+F_{3}+\gamma_{2}G_{Q}+\frac{\eta_{2}}{2}F_{4}\right), \tag{27}$$

where F_1 , F_2 , and F_3 are defined in Theorem 1.

The subproblem of optimizing P is

$$\min_{P^{T}P=I_{r}} \sum_{i=1}^{n} \left\| X_{i}P - \sum_{j=1}^{n} z_{ji}X_{j}P \right\|_{F}^{2} + \gamma_{1}\operatorname{Tr}(P^{T}G_{P}P) + \eta_{1}\operatorname{Tr}(ZL_{P}Z^{T}).$$
(28)

Theorem 5

Define $H_4 = \sum_{i=1}^{n} \sum_{j=1}^{n} ||z_i - z_j||_2^2 X_i^T X_j$. Given that Z is bounded, the problem of (28) is a constrained quadratic optimization, and admits a closed-form solution,

$$\mathbf{eig}_{r}(H_{1}-2H_{2}+H_{3}+\gamma_{1}G_{P}+\frac{\eta_{1}}{2}H_{4}), \qquad (29)$$

where H_1 , H_2 , and H_3 are defined in Theorem 2.

Optimiation-Z

The subproblem of optimizing Z is

$$\min_{Z} \sum_{i=1}^{n} J(Q, P, Z) + \eta_1 \operatorname{Tr}(ZL_P Z^T) + \eta_2 \operatorname{Tr}(ZL_Q Z^T).$$
(30)

Solution
$$Z = \operatorname{lyap}\left(\mathcal{K} + \frac{\tau}{2}I_n, \eta_1 L_P + \eta_2 L_Q + \frac{\tau}{2}I_n, \mathcal{K}\right).$$
(31)

Theorem 6 If $\tau \ge \left\{ -\eta_1 r \left(\min_i \left\{ \lambda_b \left(\sum_{j=1}^n X_i^T X_j \right) \right\} - \lambda_1 \left(\sum_{j=1}^n X_j^T X_j \right) \right) - \eta_2 r \left(\min_i \left\{ \lambda_a \left(\sum_{j=1}^n X_i X_j^T \right) \right\} - \lambda_1 \left(\sum_{j=1}^n X_j X_j^T \right) \right) \right\},$

then (31) is bounded and is the optimal solution to (30). Here, $\lambda_i(\cdot)$ is the *i*th largest eigenvalue.

Chong Peng (QDU)

Theorem 7

Let

$$\mathcal{L}(Q, P, Z) = \mathcal{J}(Q, P, Z) + \eta_1 \operatorname{Tr}(ZL_P Z^T) + \eta_2 \operatorname{Tr}(ZL_Q Z^T)$$

denote the objective function of (25). If the condition of Theorem 6 is satisfied, then under the updating rules of (27), (29) and (31), $\{\mathcal{L}(Q^k, P^k, Z^k)\}_{k=1}^{\infty}$ is non-increasing and converges, where k denotes the iteration number.

Table 5: Clustering Performance on Extended Yale B data set

No. of Subjects	2 Sub	jects	3 Sub	ojects	5 Sub	ojects	8 Sub	ojects	10 Su	bjects
Accuracy (%)	Average	Median								
LSA	67.20	52.34	47.71	50.00	41.98	43.13	40.81	41.41	39.58	42.50
SCC	83.38	92.18	61.84	60.94	41.10	40.62	33.89	35.35	26.98	24.22
LRR	90.48	94.53	80.48	85.42	65.84	65.00	58.81	56.25	61.15	58.91
LRR-H	97.46	99.22	95.79	97.40	93.10	94.37	85.66	89.94	77.08	76.41
LRSC	94.68	95.31	91.53	92.19	87.76	88.75	76.28	71.97	69.64	71.25
SSC	98.14	100.0	96.90	98.96	95.69	97.50	94.15	95.51	89.06	94.37
LatLRR	97.46	99.22	95.79	97.40	93.10	94.37	85.66	89.94	77.08	76.41
BDLRR	96.09	-	89.98	-	87.03	-	72.30	-	69.16	-
BDSSC	96.10	-	82.30	-	72.50	-	66.80	-	60.47	-
S ³ C	98.57	100.0	96.91	99.48	95.92	97.81	95.16	95.90	93.91	94.84
NSN	98.29	99.22	96.37	96.88	94.19	95.31	91.54	92.38	90.18	90.94
TRR	97.87	99.22	97.07	98.44	96.17	97.50	95.69	96.48	95.10	95.78
VR3	99.12	100.0	99.23	99.48	98.96	99.38	98.73	98.63	98.85	98.75
NVR3	99.07	100.0	99.26	99.48	99.25	99.38	99.16	99.22	99.38	99.38

Table 6: Clustering Performance on Alphadigits data set

No. of Subjects	2 Sub	jects	3 Sub	ojects	5 Sub	jects	8 Sub	jects	10 Su	bjects
Accuracy (%)	Average	Median								
LSA	89.30	96.15	77.31	77.78	66.19	66.15	59.24	59.94	57.35	58.72
SSC	94.30	97.44	86.42	91.46	76.74	74.88	70.00	69.99	67.86	67.18
LRR	92.24	96.16	85.79	88.89	76.66	76.41	69.50	69.56	66.33	67.44
LRSC	84.19	91.03	74.35	74.36	62.23	62.05	52.02	51.92	49.23	48.97
KSSC (P)	94.58	97.44	87.15	92.31	77.36	76.92	68.94	67.95	66.15	65.64
KSSC (G)	94.07	97.44	86.36	91.45	76.16	73.85	68.81	68.91	67.52	66.67
LS3C	93.77	96.15	87.33	90.17	74.76	73.85	65.94	66.03	62.99	63.51
S ³ C	93.34	94.87	86.34	88.03	72.89	71.28	64.17	65.06	62.82	61.79
TRR	95.60	97.44	90.71	93.59	81.02	83.59	72.06	72.44	68.38	69.49
VR3	96.10	98.72	91.14	94.02	81.19	83.08	73.13	74.04	73.85	76.67
NVR3	96.21	98.72	91.84	94.87	81.57	83.59	73.27	74.04	76.41	76.92

Parameter Sensitivity

Figure 11: Performance of VR3 and NVR3. K = 2 on the top while K = 10 on the bottom. Performance of NVR3 with respect to different combinations of: (a) γ_1 and γ_2 ; (b) τ and γ ; (c) η_1 and η_2 .

Chong Peng (QDU)

Extracted 2D Features and Recovered Data

Figure 12: The top left is the original image. For the rest, the first (resp. third) row are the *i*th column (row) component image $Xp_ip_i^T$ (resp. $q_iq_i^TX$), and the second (resp. fourth) row are the reconstructed images $\sum_{j=1}^{i} Xp_jp_j^T$ (resp. $\sum_{j=1}^{i} q_jq_j^TX$) using the first *i* column (resp. row) component images, which from left to right represents *i* = 1, 3, 8, 15, and 30, respectively.

K-means:

$$\begin{array}{l} \min_{U,V} \|Y - UV^T\|_F^2, \\ s.t. \quad v_{ij} \ge 0, VV^T = I_k. \end{array}$$
(32)

- K-means is the most widely used clustering method and expanding it for 2D data is attractive.
- Is it possible to expand K-means for 2D data? How?

Double-Sided Two-Dimensional K-Means

$$\begin{aligned}
&\min_{\mathbf{U}, V, P, Q} \sum_{i=1}^{n} \left\{ \left\| X_{i} P P^{T} - \sum_{j=1}^{k} U_{j} v_{ij} \right\|_{F}^{2} + \left\| Q Q^{T} X_{i} - \sum_{j=1}^{k} U_{j} v_{ij} \right\|_{F}^{2} \right\} \\
&+ \lambda \left\{ \sum_{i=1}^{n} \left\| X_{i} - X_{i} P P^{T} \right\|_{F}^{2} + \sum_{i=1}^{n} \left\| X_{i} - Q Q^{T} X_{i} \right\|_{F}^{2} \right\} \\
&+ \gamma \left\{ \operatorname{Tr}(V^{T} L_{P} V) + \operatorname{Tr}(V^{T} L_{Q} V) \right\}, \\
&\text{s.t.} \quad \mathbf{U} = \{ U_{1}, \cdots, U_{k} \}, P^{T} P = I_{r}, Q^{T} Q = I_{r}, VV^{T} = I_{k}, v_{ij} \ge 0.
\end{aligned}$$
(33)

э

Double-Sided Two-Dimensional K-Means

$$\begin{aligned}
&\min_{\mathbf{U}, V, P, Q} \sum_{i=1}^{n} \left\{ \left\| X_{i} P P^{T} - \sum_{j=1}^{k} U_{j} v_{ij} \right\|_{F}^{2} + \left\| Q Q^{T} X_{i} - \sum_{j=1}^{k} U_{j} v_{ij} \right\|_{F}^{2} \right\} \\
&+ \lambda \left\{ \sum_{i=1}^{n} \left\| X_{i} - X_{i} P P^{T} \right\|_{F}^{2} + \sum_{i=1}^{n} \left\| X_{i} - Q Q^{T} X_{i} \right\|_{F}^{2} \right\} \\
&+ \gamma \left\{ \operatorname{Tr}(V^{T} L_{P} V) + \operatorname{Tr}(V^{T} L_{Q} V) \right\}, \\
&\text{s.t.} \quad \mathbf{U} = \{ U_{1}, \cdots, U_{k} \}, P^{T} P = I_{r_{1}}, Q^{T} Q = I_{r_{2}}, r_{1} + r_{2} = 2r, \\
&VV^{T} = I_{k}, v_{ij} \ge 0.
\end{aligned}$$
(34)

Closely connected with some existing methods, such as K-means, spectral clustering, and 2DPCA.

Augmented Lagrange Multiplier (ALM)-based Optimization.

$$\begin{aligned} \min_{\mathbf{U}, V, P, Q} \sum_{i=1}^{n} \left\{ \left\| X_{i} P P^{T} - \sum_{j=1}^{k} U_{j} v_{ij} \right\|_{F}^{2} + \left\| Q Q^{T} X_{i} - \sum_{j=1}^{k} U_{j} v_{ij} \right\|_{F}^{2} \right\} \\ &+ \lambda \left\{ \sum_{i=1}^{n} \left\| X_{i} - X_{i} P P^{T} \right\|_{F}^{2} + \sum_{i=1}^{n} \left\| X_{i} - Q Q^{T} X_{i} \right\|_{F}^{2} \right\} \\ &+ \gamma \left\{ \operatorname{Tr}(V^{T} L_{P} V) + \operatorname{Tr}(V^{T} L_{Q} V) \right\} + \frac{\rho}{2} \left\| Z - V + \Theta / \rho \right\|_{F}^{2}, \end{aligned}$$
(35)
s.t.
$$\begin{aligned} \mathbf{U} = \{U_{1}, \cdots, U_{k}\}, P^{T} P = I_{r_{1}}, Q^{T} Q = I_{r_{2}}, r_{1} + r_{2} = 2r, \\ VV^{T} = I_{k}, z_{ij} \ge 0. \end{aligned}$$

Image: Image:

э

Optimization-Jointly for $\{P, Q, r_1, r_2\}$

$$\mathbf{H} := \begin{bmatrix} \mathbf{H}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_{22} \end{bmatrix}, \text{ where }$$

$$\mathbf{H}_{11} := (1 - \lambda_1) G_P - \sum_{i=1}^n (X_i^T \Theta_i + \Theta_i^T X_i),$$

$$\mathbf{H}_{22} := (1 - \lambda_1) G_Q - \sum_{i=1}^n (X_i \Theta_i^T + \Theta_i X_i^T),$$

and $\Theta_i := \sum_{j=1}^k U_j v_{ji}$.

Solution
$$\begin{bmatrix} P & 0 \\ 0 & Q \end{bmatrix} = F = \operatorname{perm}(\operatorname{eig}_{2r}(\mathbf{H} + \xi I)) = \operatorname{perm}(\operatorname{eig}_{2r}(\mathbf{H})), (36)$$

where **perm**(\cdot) is a permutation of the matrix columns, which ensures the block diagonal structure of *F*.

Chong Peng (QDU)

Reduced to

$$\min_{VV^{\tau}=I_{k}} \|V - E\|_{F}^{2}, \tag{37}$$

where

$$E := \left(\vec{\mathbf{v}}(\mathbf{U})\right)^{T} \left(\vec{\mathbf{v}}(\mathbf{X}^{P}) + \vec{\mathbf{v}}(\mathbf{X}^{Q})\right) - \frac{\lambda_{2}}{2}Z\left(L_{P} + L_{Q}\right) + \frac{\rho}{2}\left(Z + \Theta/\rho\right).$$
(38)

Solution
$$V = AB^T$$
, (39)

where A and B are matrices containing the left and right singular vectors of E, respectively.

$$\min_{z_{ij} \ge 0} \left\| Z - \left(V - \frac{\Theta}{\rho} - \frac{\lambda}{\rho} V (L_P^T + L_Q^T) \right) \right\|_F^2. \tag{40}$$
Solution
$$Z = \left(V - \frac{\Theta}{\rho} - \frac{\lambda_2}{\rho} V (L_P^T + L_Q^T) \right)_+, \tag{41}$$

where $(\cdot)_+$ is element-wisely defined by $(\theta)_+ = \frac{1}{2}(|\theta| + \theta)$.

 $\boldsymbol{U}\text{-minimization}$ subproblem is:

$$\min_{\mathbf{U}} \sum_{i=1}^{n} \left\{ \left\| X_{i} P P^{T} - \sum_{j=1}^{k} U_{j} v_{ij} \right\|_{F}^{2} + \left\| Q Q^{T} X_{i} - \sum_{j=1}^{k} U_{j} v_{ij} \right\|_{F}^{2} \right\}$$
(42)

Solution
$$\mathbf{U} = \left\{ \frac{1}{2} \sum_{i=1}^{n} (X_{i} P P^{T} + Q Q^{T} X_{i}) v_{ij} \right\}_{j=1}^{k}.$$
(43)

$$\Theta = \Theta + \rho(Z - V), \quad \rho = \rho \kappa.$$
(44)

Experimental Results

Table 7: Clustering Performance on Yale

N					Accuracy (%))			
IN IN	HCA	K-Means	KKM	SC	RPCA	2DPCA	NMF	RMNMF	DTKM
2	51.36±02.20	71.36±22.78	70.00±10.97	71.36±19.05	73.64±24.97	73.18±223.61	53.64±04.18	86.36±13.03	92.27±07.44
3	40.00±08.43	61.82±15.20	62.73±11.52	52.12±13.08	63.33±21.40	65.45±18.75	52.12±04.24	72.12±12.10	84.55±06.62
4	30.91±05.79	$46.14{\pm}11.54$	58.18±12.69	44.09±06.96	49.55±11.33	48.41±10.28	40.45±07.93	60.45±10.45	78.41±12.96
5	28.18±06.43	50.00 ± 08.45	52.73±12.03	50.73±16.47	53.27±09.35	54.36±19.59	39.82±05.65	58.73±11.37	70.91±14.97
6	23.64±05.40	50.61 ± 04.91	43.94±05.39	37.58±07.92	53.18 ± 03.53	51.97±04.04	33.64±03.90	51.36±04.07	65.15±09.56
7	22.73±06.13	47.27±06.57	47.53±07.75	39.61±11.19	54.55±04.37	51.95±05.09	34.81±06.12	52.73±04.02	67.01±06.40
8	21.36±04.54	$48.30 {\pm} 05.55$	46.25±08.02	37.73±10.67	53.98±04.92	52.61±06.16	32.95±05.59	49.89±04.68	63.86±07.42
9	19.29±03.31	45.45±07.68	45.15±06.95	32.53±06.28	54.44±02.67	48.28±05.92	30.00±03.20	50.30±06.85	58.59±04.97
10	17.64±03.30	43.36±04.29	41.82±06.23	28.91±05.71	50.00 ± 04.56	46.45±04.91	28.73±02.36	46.73±03.81	57.64±05.47
12	16.97±01.72	40.83±04.23	43.03±04.31	30.30±03.50	$49.92{\pm}05.74$	46.44±03.03	27.80±01.43	45.08±06.04	52.05±04.07
14	15.39 ± 00.31	41.75±02.82	37.92±04.10	25.52±03.02	45.65±02.87	46.04±02.09	25.06±00.98	44.61±03.33	51.62±02.96
15	14.55	39.39	43.03	21.82	44.24	43.03	21.82	44.85	52.12
Average	25.17	48.88	49.36	39.36	53.81	52.35	35.07	55.27	66.13
N				Normaliz	ed Mutual Infor	mation (%)			
Ν	НСА	K-Means	ККМ	Normaliz SC	ed Mutual Infor RPCA	mation (%) 2DPCA	NMF	RMNMF	DTKM
N 2	HCA 01.41±02.27	K-Means 35.14±42.14	KKM 17.22±15.69	Normaliz SC 30.43±29.47	ed Mutual Infor RPCA 43.23±46.31	mation (%) 2DPCA 39.63±42.56	NMF 01.15±01.90	RMNMF 52.87±29.87	DTKM 67.87±27.05
N 2 3	HCA 01.41±02.27 10.49±16.72	K-Means 35.14±42.14 33.94±22.01	KKM 17.22±15.69 33.19±16.80	Normaliz SC 30.43±29.47 25.24±20.95	ed Mutual Infor RPCA 43.23±46.31 43.87±31.44	mation (%) 2DPCA 39.63±42.56 41.45±28.65	NMF 01.15±01.90 18.91±10.05	RMNMF 52.87±29.87 46.94±18.56	DTKM 67.87±27.05 62.74±12.59
N 2 3 4	HCA 01.41±02.27 10.49±16.72 09.91±11.06	K-Means 35.14±42.14 33.94±22.01 23.75±16.61	KKM 17.22±15.69 33.19±16.80 37.56±14.27	Normaliz SC 30.43±29.47 25.24±20.95 21.25±11.23	ed Mutual Infor RPCA 43.23±46.31 43.87±31.44 33.70±15.98	mation (%) 2DPCA 39.63±42.56 41.45±28.65 28.47±14.65	NMF 01.15±01.90 18.91±10.05 14.95±10.54	RMNMF 52.87±29.87 46.94±18.56 39.72±12.17	DTKM 67.87±27.05 62.74±12.59 63.39±16.14
N 2 3 4 5	HCA 01.41±02.27 10.49±16.72 09.91±11.06 14.66±12.12	K-Means 35.14±42.14 33.94±22.01 23.75±16.61 35.68±14.72	KKM 17.22±15.69 33.19±16.80 37.56±14.27 36.96±15.16	Normaliz SC 30.43±29.47 25.24±20.95 21.25±11.23 33.17±22.40	ed Mutual Infor RPCA 43.23±46.31 43.87±31.44 33.70±15.98 44.13±12.21	mation (%) 2DPCA 39.63±42.56 41.45±28.65 28.47±14.65 39.87±26.15	NMF 01.15±01.90 18.91±10.05 14.95±10.54 23.49±09.30	RMNMF 52.87±29.87 46.94±18.56 39.72±12.17 44.78±15.32	DTKM 67.87±27.05 62.74±12.59 63.39±16.14 61.59±17.07
N 2 3 4 5 6	HCA 01.41±02.27 10.49±16.72 09.91±11.06 14.66±12.12 13.48±09.35	$\frac{\text{K-Means}}{35.14\pm42.14}\\33.94\pm22.01\\23.75\pm16.61\\35.68\pm14.72\\40.74\pm07.93$	KKM 17.22±15.69 33.19±16.80 37.56±14.27 36.96±15.16 33.76±07.42	Normaliz SC 30.43±29.47 25.24±20.95 21.25±11.23 33.17±22.40 21.77±12.82	ed Mutual Infor RPCA 43.23±46.31 43.87±31.44 33.70±15.98 44.13±12.21 44.67±05.95	mation (%) 2DPCA 39.63±42.56 41.45±28.65 28.47±14.65 39.87±26.15 42.47±06.28	NMF 01.15±01.90 18.91±10.05 14.95±10.54 23.49±09.30 20.54±07.17	RMNMF 52.87±29.87 46.94±18.56 39.72±12.17 44.78±15.32 38.37±06.02	DTKM 67.87±27.05 62.74±12.59 63.39±16.14 61.59±17.07 57.72±09.79
N 2 3 4 5 6 7	HCA 01.41±02.27 10.49±16.72 09.91±11.06 14.66±12.12 13.48±09.35 16.59±08.73	K-Means 35.14±42.14 33.94±22.01 23.75±16.61 35.68±14.72 40.74±07.93 39.44±07.78	KKM 17.22±15.69 33.19±16.80 37.56±14.27 36.96±15.16 33.76±07.42 40.62±07.07	Normaliz SC 30.43±29.47 25.24±20.95 21.25±11.23 33.17±22.40 21.77±12.82 29.02±16.15	ed Mutual Infor RPCA 43.23±46.31 43.87±31.44 33.70±15.98 44.13±12.21 44.67±05.95 48.63±06.08	mation (%) 2DPCA 39.63±42.56 41.45±28.65 28.47±14.65 39.87±26.15 42.47±06.28 46.31±05.75	NMF 01.15±01.90 18.91±10.05 14.95±10.54 23.49±09.30 20.54±07.17 27.41±08.44	RMNMF 52.87±29.87 46.94±18.56 39.72±12.17 44.78±15.32 38.37±06.02 43.89±06.09	DTKM 67.87±27.05 62.74±12.59 63.39±16.14 61.59±17.07 57.72±09.79 63.12±07.54
N 2 3 4 5 6 7 8	HCA 01.41±02.27 10.49±16.72 09.91±11.06 14.66±12.12 13.48±09.35 16.59±08.73 16.60±06.88	K-Means 35.14±42.14 33.94±22.01 23.75±16.61 35.68±14.72 40.74±07.93 39.44±07.78 43.51±05.72	KKM 17.22±15.69 33.19±16.80 37.56±14.27 36.96±15.16 33.76±07.42 40.62±07.07 43.17±09.20	Normaliz SC 30.43±29.47 25.24±20.95 21.25±11.23 33.17±22.40 21.77±12.82 29.02±16.15 33.19±14.25	ed Mutual Infor RPCA 43.23±46.31 43.87±31.44 33.70±15.98 44.13±12.21 44.67±05.95 48.63±06.08 49.65±06.68	mation (%) 2DPCA 39.63±42.56 41.45±28.65 28.47±14.65 39.87±26.15 42.47±06.28 46.31±05.75 47.97±08.00	NMF 01.15±01.90 18.91±10.05 14.95±10.54 23.49±09.30 20.54±07.17 27.41±08.44 26.32±06.87	RMNMF 52.87±29.87 46.94±18.56 39.72±12.17 44.78±15.32 38.37±06.02 43.89±06.09 44.85±05.35	DTKM 67.87±27.05 62.74±12.59 63.39±16.14 61.59±17.07 57.72±09.79 63.12±07.54 61.17±06.62
N 2 3 4 5 6 7 8 9	HCA 01.41±02.27 10.49±16.72 09.91±11.06 14.66±12.12 13.48±09.35 16.59±08.73 16.60±06.88 15.94±05.53	K-Means 35.14±42.14 33.94±22.01 23.75±16.61 35.68±14.72 40.74±07.93 39.44±07.78 43.51±05.72 42.94±08.06	KKM 17.22±15.69 33.19±16.80 37.56±14.27 36.96±15.16 33.76±07.42 40.62±07.07 43.17±09.20 41.48±06.11	Normaliz SC 30.43±29.47 25.24±20.95 21.25±11.23 33.17±22.40 21.77±12.82 29.02±16.15 33.19±14.25 25.19±08.62	ed Mutual Infor RPCA 43.23±46.31 43.87±31.44 33.70±15.98 44.13±12.21 44.67±05.95 48.63±06.08 49.65±06.68 51.76±03.55	mation (%) 2DPCA 39.63±42.56 41.45±28.65 28.47±14.65 39.87±26.15 42.47±06.28 46.31±05.75 47.97±08.00 46.80±06.43	NMF 01.15±01.90 18.91±10.05 14.95±10.54 23.49±09.30 20.54±07.17 27.41±08.44 26.32±06.87 26.60±05.05	RMNMF 52.87±29.87 46.94±18.56 39.72±12.17 44.78±15.32 38.37±06.02 43.89±06.09 44.85±05.35 45.97±06.09	DTKM 67.87±27.05 62.74±12.59 63.39±16.14 61.59±17.07 57.72±09.79 63.12±07.54 61.17±06.62 57.43±05.23
N 2 3 4 5 6 7 8 9 10	$\begin{array}{c} HCA \\ \hline 01.41\pm 02.27 \\ 10.49\pm 16.72 \\ 09.91\pm 11.06 \\ 14.66\pm 12.12 \\ 13.48\pm 09.35 \\ 16.59\pm 08.73 \\ 16.60\pm 06.88 \\ 15.94\pm 05.53 \\ 15.70\pm 04.55 \end{array}$	$\begin{array}{r} \mbox{K-Means} \\ 35.14 \pm 42.14 \\ 33.94 \pm 22.01 \\ 23.75 \pm 16.61 \\ 35.68 \pm 14.72 \\ 40.74 \pm 07.93 \\ 39.44 \pm 07.78 \\ 43.51 \pm 05.72 \\ 42.94 \pm 08.06 \\ 43.73 \pm 03.17 \end{array}$	KKM 17.22±15.69 33.19±16.80 37.56±14.27 36.96±15.16 33.76±07.42 40.62±07.07 43.17±09.20 41.48±06.11 41.53±05.41	Normaliz SC 30.43±29.47 25.24±20.95 21.25±11.23 33.17±22.40 21.77±12.82 29.02±16.15 33.19±14.25 25.19±08.62 23.94±06.23	ed Mutual Infor RPCA 43.23±46.31 43.87±31.44 33.70±15.98 44.13±12.21 44.67±05.95 48.63±06.08 49.65±06.68 51.76±03.55 49.02±05.39	mation (%) 2DPCA 39.63±42.56 41.45±28.65 28.47±14.65 39.87±26.15 42.47±06.28 46.31±05.75 47.97±08.00 46.80±06.43 46.39±05.34	NMF 01.15±01.90 18.91±10.05 14.95±10.54 23.49±09.30 20.54±07.17 27.41±08.44 26.32±06.87 26.60±05.05 27.50±03.24	RMNMF 52.87±29.87 46.94±18.56 39.72±12.17 44.78±15.32 38.37±06.02 43.89±06.09 44.85±05.35 45.97±06.09 44.59±04.10	DTKM 67.87±27.05 62.74±12.59 63.39±16.14 61.59±17.07 57.72±09.79 63.12±07.54 61.17±06.62 57.43±05.23 58.00±05.78
N 2 3 4 5 6 7 8 9 10 12	$\begin{array}{c} HCA \\ \hline 01.41\pm02.27 \\ 10.49\pm16.72 \\ 09.91\pm11.06 \\ 14.66\pm12.12 \\ 13.48\pm09.35 \\ 16.59\pm08.73 \\ 16.60\pm06.88 \\ 15.94\pm05.53 \\ 15.70\pm04.55 \\ 16.82\pm02.40 \end{array}$	K-Means 35.14±42.14 33.94±22.01 32.75±16.61 35.68±14.72 40.74±07.93 39.44±07.78 43.51±05.72 42.94±08.06 43.73±03.17 42.83±04.26	KKM 17.22±15.69 33.19±16.80 37.56±14.27 36.96±15.16 33.76±07.42 40.62±07.07 43.17±09.20 41.48±06.11 41.53±05.41 44.42±04.20	Normaliz SC 30.43±29.47 25.24±20.95 21.25±11.23 33.17±22.40 21.77±12.82 29.02±16.15 33.19±14.25 25.19±08.62 23.94±06.23 31.53±05.45	ed Mutual Infor RPCA 43.23±46.31 43.87±31.44 33.70±15.98 44.13±12.21 44.67±05.95 48.63±06.08 49.65±06.68 51.76±03.55 59.02±05.39 51.76±02.82	mation (%) 2DPCA 39.63±42.56 41.45±28.65 28.47±14.65 39.87±26.15 42.47±06.28 46.31±05.75 47.97±08.00 46.80±06.43 46.39±05.34 50.24±02.37	NMF 01.15±01.90 18.91±10.05 14.95±10.54 23.49±09.30 20.54±07.17 27.41±08.44 26.62±06.87 26.60±05.05 27.50±03.24 30.29±01.43	RMNMF 52.87±29.87 46.94±18.56 39.72±12.17 44.78±15.32 38.37±06.02 43.89±06.09 44.85±05.35 45.97±06.09 44.59±04.10 46.56±04.94	DTKM 67.87±27.05 62.74±12.59 63.39±16.14 61.59±17.07 57.72±00.79 63.12±07.54 61.17±06.62 57.43±05.23 58.00±05.78 55.99±03.03
N 2 3 4 5 6 7 8 9 10 12 14	$\begin{array}{c} HCA \\ \hline 01.41\pm02.27 \\ 10.49\pm16.72 \\ 09.91\pm11.06 \\ 14.66\pm12.12 \\ 13.48\pm09.35 \\ 16.59\pm08.73 \\ 16.60\pm06.88 \\ 15.94\pm05.53 \\ 15.70\pm04.55 \\ 16.82\pm02.40 \\ 16.82\pm02.40 \\ 16.82\pm00.13 \end{array}$	$\begin{array}{c} \text{K-Means} \\ 35.14\pm42.14 \\ 33.94\pm22.01 \\ 23.75\pm16.61 \\ 35.68\pm14.72 \\ 40.74\pm07.93 \\ 93.44\pm07.78 \\ 43.51\pm05.72 \\ 42.94\pm08.06 \\ 43.73\pm03.17 \\ 42.83\pm04.26 \\ 46.20\pm02.59 \end{array}$	KKM 17.22±15.69 33.19±16.80 37.56±14.27 36.96±15.16 33.76±07.42 40.62±07.07 43.17±09.20 41.48±06.11 44.42±04.20 44.42±04.20 44.88±03.26	Normaliz SC 30.43±29.47 25.24±20.95 21.25±11.23 33.17±22.40 29.02±16.15 33.19±14.25 25.19±08.62 23.94±06.23 31.53±05.45 28.78±04.08	ed Mutual Infor RPCA 43.23±46.31 43.87±31.44 43.87±31.44 43.70±15.98 44.13±12.21 44.67±05.95 48.63±06.08 51.76±03.55 49.02±05.39 51.76±02.82 50.86±02.13	mation (%) 2DPCA 39.63±42.56 41.45±28.65 28.47±14.65 39.87±26.15 42.47±06.28 46.31±05.75 47.97±08.00 46.80±06.43 46.39±05.34 50.24±02.37 51.36±01.95	$\frac{NMF}{18.91\pm10.05}$ 14.95±10.54 23.49±93.00 20.54±07.17 27.41±08.44 26.32±06.87 27.50±03.24 30.29±01.43 30.63±00.76	RMNMF 52.87±29.87 46.94±18.56 39.72±12.17 44.78±15.32 38.37±06.02 43.89±06.09 44.85±05.35 45.97±06.09 44.59±04.10 46.56±04.94 47.77±02.04	DTKM 67.87±27.05 62.74±12.59 63.39±16.14 61.59±17.07 57.72±09.79 63.12±07.54 61.17±06.62 57.43±05.23 58.00±05.78 55.99±03.03 55.53±02.72
N 2 3 4 5 6 7 8 9 10 12 14 15	$\begin{array}{c} HCA \\ \hline 0.41\pm02.27 \\ 10.49\pm16.72 \\ 09.91\pm11.06 \\ 14.66\pm12.12 \\ 13.48\pm09.35 \\ 16.59\pm08.73 \\ 16.60\pm06.88 \\ 15.94\pm05.53 \\ 15.70\pm04.55 \\ 16.82\pm02.40 \\ 16.82\pm00.13 \\ 16.40 \end{array}$	$\begin{array}{c} \text{K-Means} \\ 35.14\pm42.14 \\ 33.94\pm22.01 \\ 23.75\pm16.61 \\ 35.68\pm14.72 \\ 40.74\pm07.93 \\ 39.44\pm07.78 \\ 43.51\pm05.72 \\ 42.94\pm08.06 \\ 43.73\pm03.17 \\ 42.83\pm04.26 \\ 46.20\pm02.59 \\ 43.84 \end{array}$	$\begin{array}{c} {\sf KKM} \\ 17.22\pm15.69 \\ 33.19\pm16.80 \\ 37.56\pm14.27 \\ 36.96\pm15.16 \\ 33.76\pm07.42 \\ 40.62\pm07.07 \\ 43.17\pm09.20 \\ 41.48\pm06.11 \\ 41.48\pm06.11 \\ 41.48\pm06.11 \\ 44.42\pm04.20 \\ 44.88\pm03.26 \\ 46.95 \end{array}$	Normaliz SC 30.43±29.47 25.24±20.95 21.25±11.23 33.17±22.40 21.77±12.82 29.02±16.15 33.19±14.25 25.19±08.62 23.94±06.23 31.53±05.45 28.78±04.08 26.86	ed Mutual Infor RPCA 43.23±46.31 43.87±31.44 33.70±15.98 44.13±12.21 44.67±05.95 48.63±06.08 49.65±06.68 51.76±03.55 49.02±05.39 51.76±02.82 50.86±02.13 49.64	$\begin{array}{r} mation (\%) \\ \hline 2DPCA \\ 39.63\pm42.56 \\ 41.45\pm28.65 \\ 28.47\pm14.65 \\ 39.87\pm26.15 \\ 42.47\pm406.28 \\ 46.31\pm05.75 \\ 47.97\pm08.00 \\ 46.80\pm06.43 \\ 46.80\pm06.43 \\ 46.80\pm06.43 \\ 50.24\pm02.37 \\ 51.36\pm0.195 \\ 52.56 \end{array}$	$\begin{array}{c} {\sf NMF} \\ 01.15{\pm}01.90 \\ 18.91{\pm}10.05 \\ 14.95{\pm}10.54 \\ 23.49{\pm}09.30 \\ 20.54{\pm}07.17 \\ 27.41{\pm}08.44 \\ 26.62{\pm}06.87 \\ 26.60{\pm}05.05 \\ 27.50{\pm}03.24 \\ 30.29{\pm}01.43 \\ 30.63{\pm}00.76 \\ 29.25 \end{array}$	RMNMF 52.87±29.87 46.94±18.56 39.72±12.17 44.78±15.32 38.37±06.02 43.89±06.09 44.85±05.35 45.97±06.09 44.59±04.10 46.56±04.94 47.77±02.04 48.20	$\begin{array}{c} \label{eq:constraint} DTKM \\ \hline 67.87\pm27.05 \\ 62.74\pm12.59 \\ 63.39\pm16.14 \\ 61.59\pm17.07 \\ 57.72\pm09.79 \\ 63.12\pm07.54 \\ 61.17\pm06.62 \\ 57.43\pm05.23 \\ 58.00\pm05.78 \\ 55.99\pm03.03 \\ 55.53\pm02.72 \\ 52.59 \end{array}$

(ㅁ) 《畵》 《문》 《문》

Chong Peng (QDU)

Table 8: Clustering Performance on PIX

N					Accuracy (%)			
IN	HCA	K-Means	KKM	SC	RPCA	2DPCA	NMF	RMNMF	DTKM
2	94.50±10.39	94.50±10.39	99.50±01.58	94.50±10.39	99.50±01.58	99.50±01.58	73.00±11.11	96.50±07.84	100.0 ± 00.00
3	85.33±14.42	96.00±05.84	96.67±03.85	95.00±06.89	96.00±05.84	97.67±06.30	60.67±09.27	97.33±03.06	99.67±01.05
4	87.00±22.26	96.25±04.60	77.00±13.43	90.50±13.58	97.25±03.81	99.25±01.69	59.25 ± 12.47	$96.50 {\pm} 04.44$	99.75±00.79
5	72.80±24.37	87.20±11.00	75.40±11.85	71.80±13.62	90.80±09.34	95.40±08.17	$55.00{\pm}10.38$	90.80±07.50	99.40±00.97
6	63.33±24.47	84.83±12.38	74.17±12.65	72.83±12.74	90.17±09.51	90.00±11.92	47.33±05.89	89.00±08.72	98.17±04.19
7	68.14±23.00	84.14±05.89	71.86±05.68	65.57±08.31	90.27±07.64	94.86±05.64	51.29 ± 06.48	87.14±07.85	94.43±05.53
8	61.25±08.27	84.12±05.65	78.13±04.18	58.00±06.07	87.25±0714	95.25±02.27	$51.38 {\pm} 03.79$	82.37±05.38	88.50±05.92
9	72.11±09.83	83.22±07.45	88.89±04.89	57.11±04.03	92.89±00.57	96.44±00.70	45.33±05.02	$87.00 {\pm} 06.83$	94.33±05.53
10	73.00	80.00	70.00	62.00	80.00	87.00	11.00	81.00	95.00
Average	75.27	87.81	81.29	74.15	91.57	95.04	50.47	89.74	96.58
N				Normaliz	ed Mutual Info	mation (%)			
IN	HCA	K-Means	KKM	SC	RPCA	2DPCA	NMF	RMNMF	DTKM
2	83.81±28.77	83.81±28.77	97.58±07.64	83.81±28.77	97.58±07.64	97.58±07.64	25.16±21.49	88.28±22.45	100.0 ± 00.00
3	77.98±11.64	89.87±11.64	90.84±08.94	88.11±14.96	89.87±11.64	94.95±12.80	$34.04{\pm}13.10$	$92.32{\pm}08.18$	98.98±03.22
4	86.63±07.13	93.39±07.13	74.99±12.76	86.82±16.72	94.67±05.78	98.42±03.44	42.33±16.08	93.45±07.08	98.75±02.01
5	75.40±07.04	87.42±08.35	77.38±10.89	67.15±14.69	90.13±07.54	93.60±10.71	$47.52{\pm}10.15$	88.04 ± 07.35	98.04±03.78
6	70.44±05.09	86.71±08.47	73.30±08.81	69.75±11.39	90.64±05.68	91.12±08.83	$45.19{\pm}07.04$	87.05±07.23	93.71±05.88
7	75.50±04.18	86.74±03.63	77.56±06.43	64.08±09.35	91.54±04.57	93.92±04.67	$49.54{\pm}08.12$	87.06 ± 07.05	92.46±02.09
8	72.33±01.28	85.70±03.87	81.73±04.35	60.00±05.12	90.56±03.07	93.29±02.72	49.33±03.90	83.54 ± 04.15	93.50±03.19
9	80.16 ± 01.76	86.31±04.83	87.91±06.31	60.67±03.91	92.78±00.82	94.76±00.94	$45.26{\pm}03.24$	$87.89 {\pm} 04.59$	94.31±03.27
10	81.42	88.09	69.29	62.45	87.01	92.52	11.73	86.02	95.85

Image: Image:

э

Experimental Results

Table 9: Clustering Performance on 40% Corrupted ORL

N					Accuracy (%)				
IN IN	HCA	K-Means	KKM	SC	RPCA	2DPCA	NMF	RMNMF	DTKM
2	60.00±14.14	78.50±15.82	$55.00 {\pm} 00.00$		$65.50{\pm}09.85$	77.50±20.03	$61.00{\pm}06.58$	76.50±16.67	93.50±09.73
4	31.00±03.16	49.75±09.68	$37.50 {\pm} 00.00$		$49.50 {\pm} 06.65$	59.00±10.08	$38.75 {\pm} 04.45$	53.50 ± 10.01	68.75±12.09
6	23.83±01.37	36.33±07.89	$31.67 {\pm} 00.00$		43.67±07.28	48.17±12.36	31.67 ± 02.48	45.50±10.45	68.67±17.12
8	18.50 ± 01.84	30.38±04.72	$31.25 {\pm} 00.00$		$41.25 {\pm} 05.56$	42.75±06.42	$29.75 {\pm} 04.16$	34.25±04.87	59.12±06,92
10	15.90 ± 00.88	29.27±03.58	$27.00 {\pm} 00.00$		$34.50{\pm}04.22$	39.40±05.13	$11.00{\pm}00.00$	33.10±03.60	53.20±07.39
12	13.67±01.43	27.42±02.40	$22.50{\pm}00.00$		$33.50{\pm}04.02$	34.50±04.93	$23.33{\pm}01.80$	30.75±02.65	47.17±04.16
14	12.14±00.95	25.50±02.78	$21.43{\pm}00.00$		32.64±03.63	36.21±04.73	$23.29{\pm}01.31$	28.50±02.98	44.00±02.84
16	11.37 ± 00.77	23.81±02.80	$21.88{\pm}00.00$		$29.25 {\pm} 02.55$	33.88±03.06	$21.69{\pm}00.84$	25.94±01.57	43.19±04.73
18	10.61 ± 00.81	23.06±02.03	$19.44{\pm}00.00$		$30.72{\pm}03.74$	32.06±02.80	$21.39{\pm}01.29$	25.83±01.58	44.00±04.44
20	10.20 ± 00.89	22.10±02.00	$20.00 {\pm} 00.00$		$27.70{\pm}03.10$	31.95 ± 03.07	$19.85 {\pm} 01.36$	26.35±01.43	39.45±03.64
Average	20.72	34.61	28.77		35.57	43.54	25.84	38.02	55.70
N				Normalize	ed Mutual Infor	mation (%)			
1.1.1					a mataan mon				
	HCA	K-Means	KKM	SC	RPCA	2DPCA	NMF	RMNMF	DTKM
2	HCA 14.62±30.00	K-Means 43.76±35.61	KKM 00.79±00.00	SC	RPCA 12.74±12.09	2DPCA 43.50±44.67	NMF 07.33±09.71	RMNMF 34.46±33.07	DTKM 76.60±30.23
2 4	HCA 14.62±30.00 09.63±03.12	K-Means 43.76±35.61 26.82±12.41	KKM 00.79±00.00 08.93±00.00	SC	RPCA 12.74±12.09 24.67±06.12	2DPCA 43.50±44.67 38.37±12.68	NMF 07.33±09.71 11.68±04.82	RMNMF 34.46±33.07 32.00±12.80	DTKM 76.60±30.23 54.17±14.51
2 4 6	HCA 14.62±30.00 09.63±03.12 10.45±02.09	K-Means 43.76±35.61 26.82±12.41 20.64±09.85	KKM 00.79±00.00 08.93±00.00 17.02±00.00	SC	RPCA 12.74±12.09 24.67±06.12 30.53±09.59	2DPCA 43.50±44.67 38.37±12.68 35.82±13.95	NMF 07.33±09.71 11.68±04.82 15.68±03.16	RMNMF 34.46±33.07 32.00±12.80 31.24±10.86	DTKM 76.60±30.23 54.17±14.51 61.41±20.70
2 4 6 8	HCA 14.62±30.00 09.63±03.12 10.45±02.09 10.38±01.55	K-Means 43.76±35.61 26.82±12.41 20.64±09.85 22.45±06.22	KKM 00.79±00.00 08.93±00.00 17.02±00.00 21.29±00.00	SC	RPCA 12.74±12.09 24.67±06.12 30.53±09.59 36.09±06.28	2DPCA 43.50±44.67 38.37±12.68 35.82±13.95 36.88±07.35	NMF 07.33±09.71 11.68±04.82 15.68±03.16 20.69±03.54	RMNMF 34.46±33.07 32.00±12.80 31.24±10.86 26.83±06.68	DTKM 76.60±30.23 54.17±14.51 61.41±20.70 56.09±06.98
2 4 6 8 10	HCA 14.62±30.00 09.63±03.12 10.45±02.09 10.38±01.55 09.72±00.86	K-Means 43.76±35.61 26.82±12.41 20.64±09.85 22.45±06.22 25.37±04.16	KKM 00.79±00.00 08.93±00.00 17.02±00.00 21.29±00.00 23.72±00.00	SC	RPCA 12.74±12.09 24.67±06.12 30.53±09.59 36.09±06.28 33.73±04.38	2DPCA 43.50±44.67 38.37±12.68 35.82±13.95 36.88±07.35 38.11±05.97	NMF 07.33±09.71 11.68±04.82 15.68±03.16 20.69±03.54 11.73±00.00	RMNMF 34.46±33.07 32.00±12.80 31.24±10.86 26.83±06.68 29.77±04.75	DTKM 76.60±30.23 54.17±14.51 61.41±20.70 56.09±06.98 54.80±05.89
2 4 6 8 10 12	$\begin{array}{r} \text{HCA} \\ \hline 14.62{\pm}30.00 \\ 09.63{\pm}03.12 \\ 10.45{\pm}02.09 \\ 10.38{\pm}01.55 \\ 09.72{\pm}00.86 \\ 10.16{\pm}00.78 \end{array}$	K-Means 43.76±35.61 26.82±12.41 20.64±09.85 22.45±06.22 25.37±04.16 26.16±03.84	KKM 00.79±00.00 08.93±00.00 17.02±00.00 21.29±00.00 23.72±00.00 24.40±00.00	SC	RPCA 12.74±12.09 24.67±06.12 30.53±09.59 36.09±06.28 33.73±04.38 35.80±03.90	2DPCA 43.50±44.67 38.37±12.68 35.82±13.95 36.88±07.35 38.11±05.97 36.13±06.41	NMF 07.33±09.71 11.68±04.82 15.68±03.16 20.69±03.54 11.73±00.00 24.13±01.96	RMNMF 34.46±33.07 32.00±12.80 31.24±10.86 26.83±06.68 29.77±04.75 30.12±02.11	DTKM 76.60±30.23 54.17±14.51 61.41±20.70 56.09±06.98 54.80±05.89 51.80±04.46
2 4 6 8 10 12 14	HCA 14.62±30.00 09.63±03.12 10.45±02.09 10.38±01.55 09.72±00.86 10.16±00.78 10.00±00.42	K-Means 43.76±35.61 26.82±12.41 20.64±09.85 22.45±06.22 25.37±04.16 26.16±03.84 26.10±02.79	KKM 00.79±00.00 08.93±00.00 17.02±00.00 21.29±00.00 23.72±00.00 24.40±00.00 26.36±00.00	SC	RPCA 12.74±12.09 24.67±06.12 30.53±09.59 36.09±06.28 33.73±04.38 35.80±03.90 38.26±03.47	2DPCA 43.50±44.67 38.37±12.68 35.82±13.95 36.88±07.35 38.11±05.97 36.13±06.41 41.14±05.66	NMF 07.33±09.71 11.68±04.82 15.68±03.16 20.69±03.54 11.73±00.00 24.13±01.96 27.07±02.20	RMNMF 34.46±33.07 32.00±12.80 31.24±10.86 26.83±06.68 29.77±04.75 30.12±02.11 30.89±03.02	DTKM 76.60±30.23 54.17±14.51 61.41±20.70 56.09±06.98 54.80±05.89 51.80±04.46 50.78±02.45
2 4 6 8 10 12 14 16	HCA 14.62±30.00 09.63±03.12 10.45±02.09 10.38±01.55 09.72±00.86 10.16±00.78 10.00±00.42 10.08±00.36	K-Means 43.76±35.61 26.82±12.41 20.64±09.85 22.45±06.22 25.37±04.16 26.16±03.84 26.10±02.79 27.18±02.80	KKM 00.79±00.00 08.93±00.00 17.02±00.00 21.29±00.00 23.72±00.00 24.40±00.00 26.36±00.00 29.41±00.00	SC	RPCA 12.74±12.09 24.67±06.12 30.53±09.59 36.09±06.28 33.73±04.38 35.80±03.90 38.26±03.47 35.31±02.43	2DPCA 43.50±44.67 38.37±12.68 35.82±13.95 36.88±07.35 38.11±05.97 36.13±06.41 41.14±05.66 41.68±03.10	NMF 07.33±09.71 11.68±04.82 15.68±03.16 20.69±03.54 11.73±00.00 24.13±01.96 27.07±02.20 27.75±00.68	RMNMF 34.46±33.07 32.00±12.80 31.24±10.86 26.83±06.68 29.77±04.75 30.12±02.11 30.89±03.02 31.74±02.58	DTKM 76.60±30.23 54.17±14.51 61.41±20.70 56.09±06.98 54.80±05.89 51.80±04.46 50.78±02.45 51.45±04.41
2 4 6 8 10 12 14 16 18	HCA 14.62±30.00 09.63±03.12 10.45±02.09 10.38±01.55 09.72±00.86 10.16±00.78 10.00±00.42 10.08±00.36 10.35±00.65	$\begin{array}{r} \mbox{K-Means} \\ \hline 43.76 \pm 35.61 \\ 26.82 \pm 12.41 \\ 20.64 \pm 09.85 \\ 22.45 \pm 06.22 \\ 25.37 \pm 04.16 \\ 26.16 \pm 03.84 \\ 26.10 \pm 02.79 \\ 27.18 \pm 02.80 \\ 27.78 \pm 01.76 \end{array}$	KKM 00.79±00.00 08.93±00.00 17.02±00.00 23.72±00.00 24.40±00.00 26.36±00.00 29.41±00.00 28.80±00.00	SC	RPCA 12.74±12.09 24.67±06.12 30.53±09.59 36.09±06.28 33.73±04.38 35.80±03.90 38.26±03.47 35.31±02.43 38.96±03.73	2DPCA 43.50±44.67 38.37±12.68 35.82±13.95 36.88±07.35 38.11±05.97 36.13±06.41 41.14±05.66 41.68±03.10 42.12±02.52	NMF 07.33±09.71 11.68±04.82 15.68±03.16 20.69±03.54 11.73±00.00 24.13±01.96 27.07±02.20 27.75±00.68 29.92±01.17	RMNMF 34.46±33.07 32.00±12.80 31.24±10.86 26.83±06.68 29.77±04.75 30.12±02.11 30.89±03.02 31.74±02.58 33.37±01.92	DTKM 76.60±30.23 54.17±14.51 61.41±20.70 56.09±06.98 54.80±05.89 51.80±04.46 50.78±02.45 51.45±04.41 49.46±04.50
2 4 6 8 10 12 14 16 18 20	HCA 14.62±30.00 09.63±03.12 10.45±02.09 10.38±01.55 09.72±00.86 10.16±00.78 10.00±00.42 10.08±00.36 10.35±00.65 10.17±00.43	$\begin{array}{r} \mbox{K-Means} \\ \hline 43.76 \pm 35.61 \\ 26.82 \pm 12.41 \\ 20.64 \pm 09.85 \\ 22.45 \pm 06.22 \\ 25.37 \pm 04.16 \\ 26.16 \pm 03.84 \\ 26.10 \pm 02.79 \\ 27.18 \pm 02.80 \\ 27.78 \pm 01.76 \\ 28.41 \pm 02.30 \end{array}$	$\begin{array}{c} {\sf KKM} \\ 00.79 {\pm} 00.00 \\ 08.93 {\pm} 00.00 \\ 17.02 {\pm} 00.00 \\ 21.29 {\pm} 00.00 \\ 23.72 {\pm} 00.00 \\ 24.40 {\pm} 00.00 \\ 26.36 {\pm} 00.00 \\ 29.41 {\pm} 00.00 \\ 28.80 {\pm} 00.00 \\ 30.99 {\pm} 00.00 \end{array}$	SC	$\begin{array}{c} \hline RPCA \\ \hline 12.74 \pm 12.09 \\ 24.67 \pm 06.12 \\ 30.53 \pm 09.59 \\ 36.09 \pm 06.28 \\ 33.73 \pm 04.38 \\ 35.80 \pm 03.90 \\ 38.26 \pm 03.47 \\ 35.31 \pm 02.43 \\ 38.96 \pm 03.73 \\ 37.79 \pm 03.30 \end{array}$	$\begin{array}{c} \text{2DPCA} \\ \textbf{43.50} \pm 44.67 \\ \textbf{38.37} \pm 12.68 \\ \textbf{35.82} \pm 13.95 \\ \textbf{36.88} \pm 07.35 \\ \textbf{38.11} \pm 05.97 \\ \textbf{36.13} \pm 06.41 \\ \textbf{41.14} \pm 05.66 \\ \textbf{41.68} \pm 03.10 \\ \textbf{42.12} \pm 02.52 \\ \textbf{43.96} \pm 03.97 \\ \end{array}$	$\frac{NMF}{07.33\pm09.71}\\ 11.68\pm04.82\\ 15.68\pm03.16\\ 20.69\pm03.54\\ 11.73\pm00.00\\ 24.13\pm01.96\\ 27.07\pm02.20\\ 27.75\pm00.68\\ 29.92\pm01.17\\ 30.09\pm01.33\\ \end{array}$	RMNMF 34.46±33.07 32.00±12.80 31.24±10.86 26.83±06.68 29.77±04.75 30.12±02.11 30.89±03.02 31.74±02.58 33.37±01.92 36.87±01.33	DTKM 76.60±30.23 54.17±14.51 61.41±20.70 56.09±06.98 54.80±05.89 51.80±04.46 50.78±02.45 51.45±04.41 49.46±04.50 49.75±03.64

Experimental Results

Table 10: Clustering Performance on 60% Corrupted ORL

N					Accuracy (%)				
IN IN	HCA	K-Means	KKM	SC	RPCA	2DPCA	NMF	RMNMF	DTKM
2	55.00±00.00	72.50±13.18	55.00 ± 00.00		55.00 ± 00.00	67.00±12.74	$59.00{\pm}06.58$	$66.50{\pm}11.56$	87.50±11.84
4	30.50±01.05	42.25±05.83	37.50±00.00		27.50±00.00	44.00±08.51	$38.00 {\pm} 03.07$	44.75±06.06	61.50±05.55
6	23.50±01.46	33.00±04.50	31.67±00.00		18.33±00.00	37.00±09.26	$31.50 {\pm} 03.80$	$35.50 {\pm} 04.91$	51.67±16.10
8	18.75±01.95	29.25±01.79	31.25±00.00		13.75 ± 00.00	32.25±03.27	28.50 ± 02.75	29.13±02.95	42.50±05.30
10	16.70±01.42	26.20±01.69	27.00±00.00		$11.00{\pm}00.00$	28.30±03.56	$11.00{\pm}00.00$	26.30±02.36	37.50±03.72
12	14.58 ± 01.06	23.92±02.39	22.50±00.00		10.00 ± 00.00	27.17±02.49	$24.33{\pm}01.88$	24.33±02.63	34.58±01.58
14	12.93±01.09	23.36±01.69	21.43±00.00		08.57±00.00	25.21±02.36	$22.14{\pm}00.89$	24.14±02.23	34.86±04.61
16	12.06±00.84	22.00±01.21	21.88±00.00		07.50±00.00	24.69±02.29	$21.25{\pm}01.41$	$21.94{\pm}01.65$	30.69±02.53
18	11.44 ± 00.65	20.94±01.17	19.44±00.00		06.67±06.00	24.22±01.05	$21.06{\pm}01.21$	21.33 ± 01.18	29.28±03.78
20	10.60 ± 00.57	21.10±01.76	20.00±00.00		06.00±00.00	23.65±02.59	$20.75 {\pm} 01.32$	20.85±01.93	28.25±03.63
Average	20.61	31.45	28.77		16.43	33.35	27.75	31.48	43.83
N				Normaliz	ed Mutual Infor	mation (%)			
N	НСА	K-Means	ККМ	Normalize SC	ed Mutual Infor RPCA	mation (%) 2DPCA	NMF	RMNMF	
N 2	HCA 05.19±00.00	K-Means 26.61±23.96	KKM 00.81±00.05	Normalize SC	ed Mutual Infor RPCA 05.19±00.00	mation (%) 2DPCA 17.01±16.16	NMF 03.86±04.01	RMNMF 14.33±15.97	DTKM 56.93±36.99
N 2 4	HCA 05.19±00.00 07.97±00.86	K-Means 26.61±23.96 15.79±08.02	KKM 00.81±00.05 08.93±00.00	Normalize SC	ed Mutual Infor RPCA 05.19±00.00 08.20±00.00	mation (%) 2DPCA 17.01±16.16 15.80±08.36	NMF 03.86±04.01 07.87±02.82	RMNMF 14.33±15.97 16.33±08.77	DTKM 56.93±36.99 38.29±08.99
N 2 4 6	HCA 05.19±00.00 07.97±00.86 09.32±00.94	K-Means 26.61±23.96 15.79±08.02 16.06±04.27	KKM 00.81±00.05 08.93±00.00 17.02±00.00	Normalize SC	ed Mutual Infor RPCA 05.19±00.00 08.20±00.00 09.56±00.00	mation (%) 2DPCA 17.01±16.16 15.80±08.36 23.44±11.20	NMF 03.86±04.01 07.87±02.82 14.05±03.90	RMNMF 14.33±15.97 16.33±08.77 20.78±05.58	DTKM 56.93±36.99 38.29±08.99 41.03±19.23
N 2 4 6 8	HCA 05.19±00.00 07.97±00.86 09.32±00.94 09.57±00.66	K-Means 26.61±23.96 15.79±08.02 16.06±04.27 20.66±02.71	KKM 00.81±00.05 08.93±00.00 17.02±00.00 21.29±00.00	Normalize SC	ed Mutual Infor RPCA 05.19±00.00 08.20±00.00 09.56±00.00 10.60±00.00	mation (%) 2DPCA 17.01±16.16 15.80±08.36 23.44±11.20 23.65±04.99	NMF 03.86±04.01 07.87±02.82 14.05±03.90 18.06±02.48	RMNMF 14.33±15.97 16.33±08.77 20.78±05.58 18.89±02.97	DTKM 56.93±36.99 38.29±08.99 41.03±19.23 35.96±04.88
N 2 4 6 8 10	HCA 05.19±00.00 07.97±00.86 09.32±00.94 09.57±00.66 09.84±00.74	K-Means 26.61±23.96 15.79±08.02 16.06±04.27 20.66±02.71 21.07±02.14	KKM 00.81±00.05 08.93±00.00 17.02±00.00 21.29±00.00 23.72±00.00	Normalize SC	ed Mutual Infor RPCA 05.19±00.00 08.20±00.00 09.56±00.00 10.60±00.00 11.73±00.00	mation (%) 2DPCA 17.01±16.16 15.80±08.36 23.44±11.20 23.65±04.99 23.88±04.12	NMF 03.86±04.01 07.87±02.82 14.05±03.90 18.06±02.48 11.73±00.00	RMNMF 14.33±15.97 16.33±08.77 20.78±05.58 18.89±02.97 20.44±03.48	DTKM 56.93±36.99 38.29±08.99 41.03±19.23 35.96±04.88 36.60±04.20
N 2 4 6 8 10 12	HCA 05.19±00.00 07.97±00.86 09.32±00.94 09.57±00.66 09.84±00.74 09.86±00.47	K-Means 26.61±23.96 15.79±08.02 16.06±04.27 20.66±02.71 21.07±02.14 23.22±03.14	KKM 00.81±00.05 08.93±00.00 17.02±00.00 21.29±00.00 23.72±00.00 24.40±00.00	Normalize SC	ed Mutual Infor RPCA 05.19±00.00 08.20±00.00 09.56±00.00 10.60±00.00 11.73±00.00 12.36±00.00	mation (%) 2DPCA 17.01±16.16 15.80±08.36 23.44±11.20 23.65±04.99 23.88±04.12 28.30±02.50	NMF 03.86±04.01 07.87±02.82 14.05±03.90 18.06±02.48 11.73±00.00 24.64±02.97	RMNMF 14.33±15.97 16.33±08.77 20.78±05.58 18.89±02.97 20.44±03.48 22.14±04.06	DTKM 56.93±36.99 38.29±08.99 41.03±19.23 35.96±04.88 36.60±04.20 36.21±02.61
N 2 4 6 8 10 12 14	HCA 05.19±00.00 07.97±00.86 09.32±00.94 09.57±00.66 09.84±00.74 09.86±00.47 09.77±00.36	K-Means 26.61±23.96 15.79±08.02 16.06±04.27 20.66±02.71 21.07±02.14 23.22±03.14 25.32±02.41	KKM 00.81±00.05 08.93±00.00 17.02±00.00 21.29±00.00 23.72±00.00 24.40±00.00 26.36±00.00	Normalize	ed Mutual Infor RPCA 05.19±00.00 08.20±00.00 09.56±00.00 10.60±00.00 11.73±00.00 12.36±00.00 11.96±00.00	mation (%) 2DPCA 17.01±16.16 15.80±08.36 23.44±11.20 23.65±04.99 23.88±04.12 28.30±02.50 29.14±02.51	NMF 03.86±04.01 07.87±02.82 14.05±03.90 18.06±02.48 11.73±00.00 24.64±02.97 25.36±01.62	RMNMF 14.33±15.97 16.33±08.77 20.78±05.58 18.89±02.97 20.44±03.48 22.14±04.06 24.18±04.22	DTKM 56.93±36.99 38.29±08.99 41.03±19.23 35.96±04.88 36.60±04.20 36.21±02.61 39.28±04.05
N 2 4 6 8 10 12 14 16	HCA 05.19±00.00 07.97±00.86 09.32±00.94 09.57±00.66 09.84±00.74 09.86±00.47 09.77±00.36 09.66±00.15	K-Means 26.61±23.96 15.79±08.02 16.06±04.27 20.66±02.71 21.07±02.14 23.22±03.14 25.32±02.41 26.09±01.70	KKM 00.81±00.05 08.93±00.00 17.02±00.00 23.72±00.00 24.40±00.00 26.36±00.00 29.41±00.00	Normalize	ed Mutual Infor RPCA 05.19±00.00 08.20±00.00 09.56±00.00 10.60±00.00 11.73±00.00 11.36±00.00 11.96±00.00 11.81±00.00	mation (%) 2DPCA 17.01±16.16 15.80±08.36 23.44±11.20 23.65±04.99 23.88±04.12 28.30±02.50 29.14±02.51 30.63±02.90	NMF 03.86±04.01 07.87±02.82 14.05±03.90 18.06±02.48 11.73±00.00 24.64±02.97 25.36±01.62 26.75±02.27	RMNMF 14.33±15.97 16.33±08.77 20.78±05.58 18.89±02.97 20.44±03.48 22.14±04.06 24.18±04.22 25.45±01.67	DTKM 56.93±36.99 38.29±08.99 41.03±19.23 35.96±04.88 36.60±04.20 36.21±02.61 39.28±04.05 37.04±02.36
N 2 4 6 8 10 12 14 16 18	HCA 05.19±00.00 07.97±00.86 09.32±00.94 09.57±00.66 09.84±00.74 09.86±00.47 09.77±00.36 09.66±00.15 09.99±00.32	K-Means 26.61±23.96 15.79±08.02 16.06±04.27 20.66±02.71 21.07±02.14 23.22±03.14 25.32±02.41 26.09±01.70 27.10±01.42	KKM 00.81±00.05 08.93±00.00 17.02±00.00 21.29±00.00 23.72±00.00 24.40±00.00 26.36±00.00 29.41±00.00 28.80±00.00	Normalize SC	ed Mutual Infor RPCA 05.19±00.00 08.20±00.00 10.60±00.00 11.73±00.00 11.36±00.00 11.86±00.00 11.86±00.00	mation (%) 2DPCA 17.01±16.16 15.80±08.36 23.44±11.20 23.65±04.99 23.88±04.12 28.30±02.50 29.14±02.51 30.63±02.90 31.93±01.43	NMF 03.86±04.01 07.87±02.82 14.05±03.90 18.06±02.48 11.73±00.00 24.64±02.97 25.36±01.62 26.75±02.27 29.55±01.23	$\begin{array}{c} \mbox{RMNMF} \\ \hline 14.33 \pm 15.97 \\ 16.33 \pm 08.77 \\ 20.78 \pm 05.58 \\ 18.89 \pm 02.97 \\ 20.44 \pm 03.48 \\ 22.14 \pm 04.06 \\ 24.18 \pm 04.22 \\ 25.45 \pm 01.67 \\ 27.93 \pm 01.71 \end{array}$	DTKM 56.93±36.99 38.29±08.99 41.03±19.23 35.96±04.88 36.60±04.20 36.21±02.61 39.28±04.05 37.04±02.36 38.29±03.80
N 2 4 6 8 10 12 14 16 18 20	$\begin{array}{c} \\ \hline \\ HCA \\ 05.19\pm00.00 \\ 07.97\pm00.86 \\ 09.32\pm00.94 \\ 09.57\pm00.66 \\ 09.84\pm00.74 \\ 09.86\pm00.47 \\ 09.66\pm00.15 \\ 09.96\pm00.32 \\ 09.97\pm00.27 \end{array}$	K-Means 26.61±23.96 15.79±08.02 16.06±04.27 20.66±02.71 21.07±02.14 25.32±02.41 26.09±01.70 27.10±01.42 28.84±02.03	KKM 00.81±00.05 08.93±00.00 17.02±00.00 21.29±00.00 24.40±00.00 26.36±00.00 29.41±00.00 28.80±00.00 30.99±00.00	Normaliz SC	d Mutual Infor RPCA 05.19±00.00 09.56±00.00 10.60±00.00 11.73±00.00 12.36±00.00 11.81±00.00 11.86±00.00 11.86±00.00 12.13±00.00	mation (%) 2DPCA 17.01±16.16 15.80±08.36 23.44±11.20 23.65±04.99 23.88±04.12 28.30±02.50 29.14±02.51 30.63±02.90 31.93±01.43 33.40±03.26	NMF 03.86±04.01 07.87±02.82 14.05±03.90 18.06±02.48 11.73±00.00 24.64±02.97 25.36±01.62 26.75±02.27 29.55±01.23 31.41±01.48	RMNMF 14.33±15.97 16.33±08.77 20.78±05.58 18.89±02.97 20.44±03.48 22.14±04.06 24.18±04.22 25.45±01.67 27.93±01.71 28.52±03.42	DTKM 56.93±36.99 38.29±08.99 41.03±19.23 35.96±04.88 36.60±04.20 36.21±02.61 39.28±04.05 37.04±02.36 38.29±03.80 38.04±03.52

Chong Peng (QDU)

May 16, 2018 61 / 66

Effect of Number of Projection Directions

Figure 13: Performance variations in accuracy and NMI with respect to different *r* values on Yale and PIX.

Extracted Features

Figure 14: Extracted 2D features from two sample images of Yale data set. In each block of (a) and (b), the top left is the original image; in the right, from top to bottom are $Xp_ip_i^T$, $\sum_{j=1}^i Xp_ip_i^T$, $q_iq_i^T X$, and $\sum_{j=1}^i q_iq_i^T X$, i.e., the *i*th feature extracted by *P*, the recovered image by the top *i* projection directions of *P*, the *i*th feature extracted by *Q*, and the recovered image by the top *i* projection directions of *Q*, respectively. From left to right, *i* equals to 1, 2, 3, and 4, respectively.

Future Work

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Chong Peng (QDU)

VALSE Webinar

May 16, 2018 66 / 66