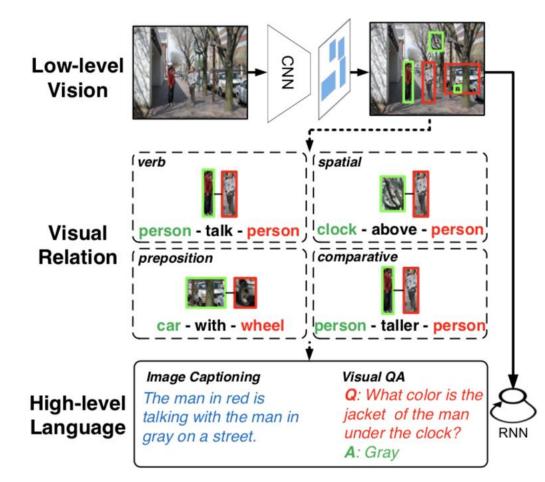
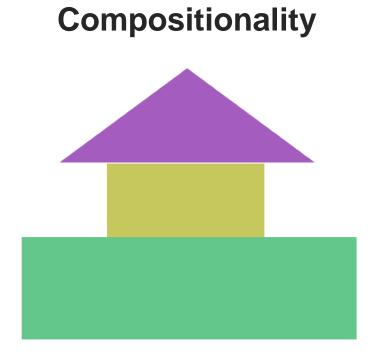

Towards X Visual Reasoning

Hanwang Zhang 张含望 hanwangzhang@ntu.edu.sg


School of Computer Science and Engineering

Pattern Recognition v.s. Reasoning

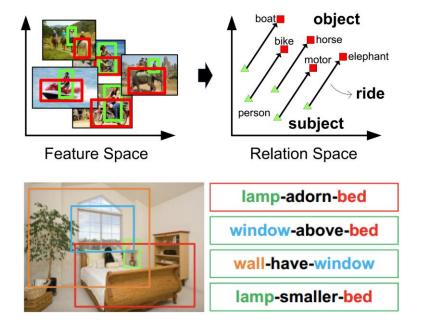
Pattern Recognition v.s. Reasoning



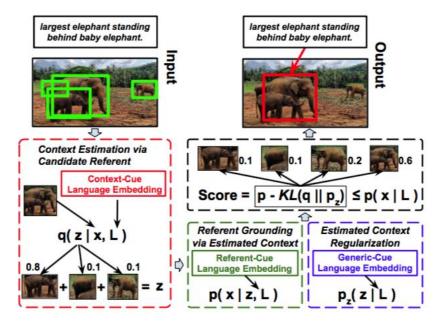
Caption: Lu et al. Neural Baby Talk. CVPR'18

VQA: Teney et al. Graph-Structured Representations for Visual Question Answering. CVPR'17 Cond. Image Generation: Jonson et al. Image Generation from Scene Graphs. CVPR'18

Reasoning: Core Problems


Learning to Reason

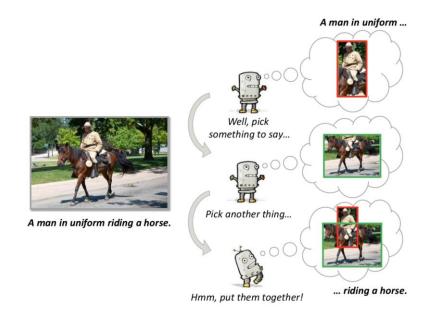
1+1=2 a+a=2a



Three Examples

Visual Relation Detection [CVPR'17, ICCV'17] Referring Expression Grounding [CVPR'

Compositionality

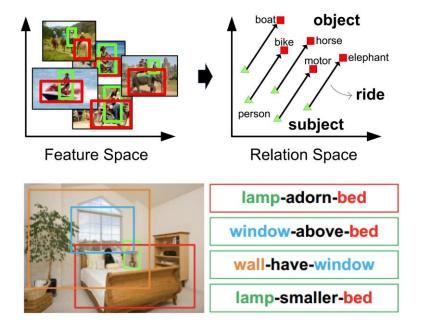


Learning to Reason

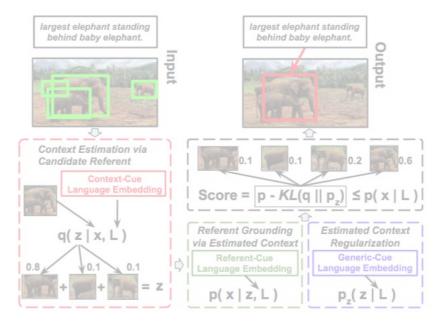
Three Examples

Sequence-level Image Captioning [MM'18 submission]

Learning to Reason


Two Future Works

- Scene Dynamics
- Design-free NMN for VQA

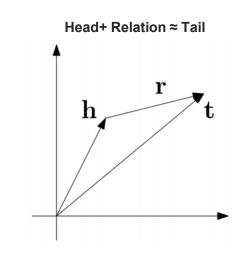


Three Examples

Visual Relation Detection [CVPR'17, ICCV'17] Referring Expression Grounding [CVPR'

Compositionality

Learning to Reason

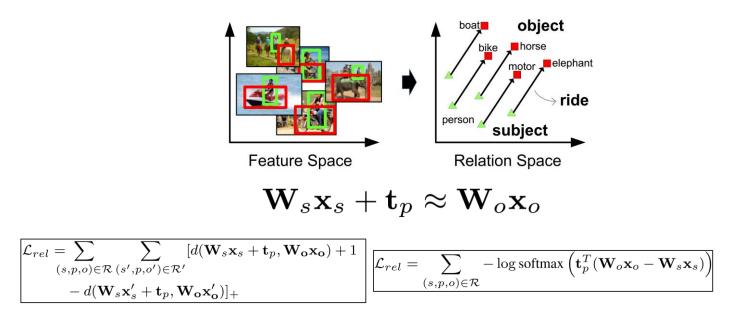

Challenges in Visual Relation Detection

- Modeling <Subject, Predicate, Object>
 - Joint Model: direct triplet modeling
 - Complexity O(N²R)→hard to scale up
 - Separate Model: separate objects & predicate
 - Complexity O(N+R)→visual diversity

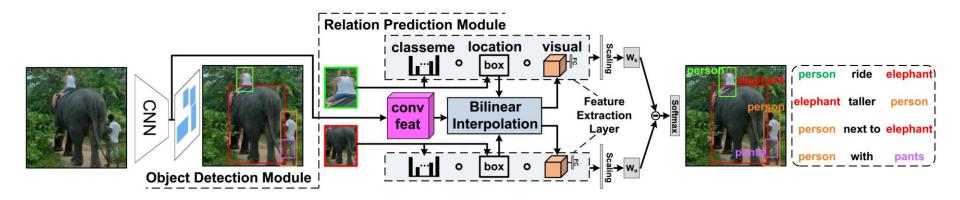
TransE: Translation Embedding [Bordes et al. NIPS'13]

WALL-E

_has_genre

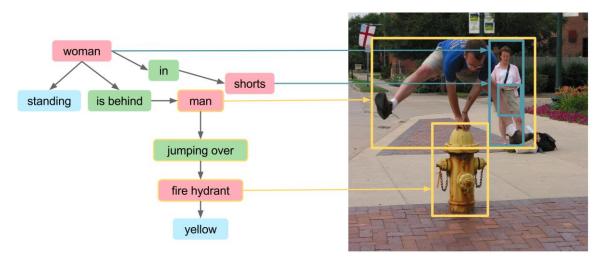

Animation Computer Anim. Comedy film Adventure film Science Fiction Fantasy Stop motion Satire Drama Connecting

Visual Translation Embedding


[Zhang et al. CVPR'17, ICCV'17]

• VTransE: Visual extension of TransE

VTransE Network



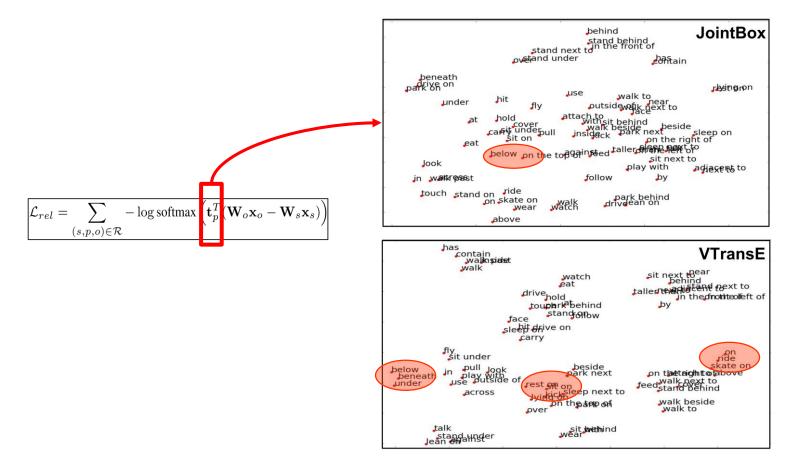
Evaluation: Relation Datasets

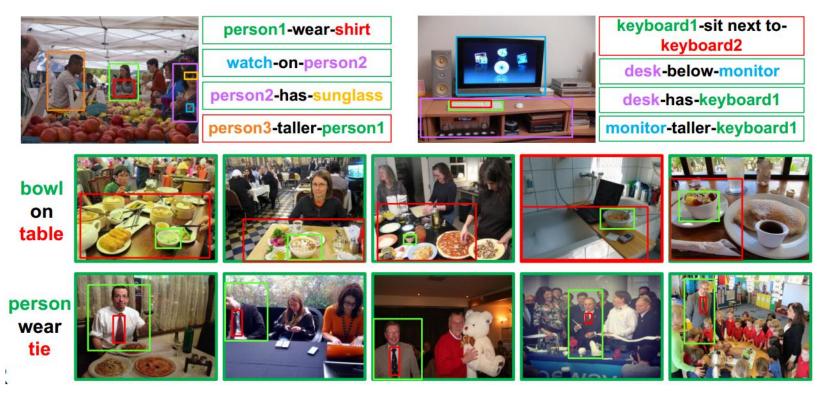
- Visual Relationship Lu et al. ECCV'16
- Visual Genome Krishna et al. IJCV'16

DataSet	Image	Object	Predicate	Unique Relation	Relation/ Object
VRD	5,000	100	70	6,672	24.25
VG	99,658	200	100	19,237	57

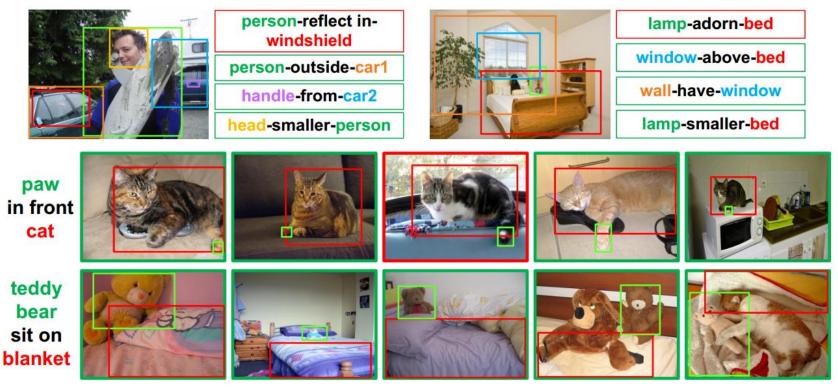
Main Deficiency: Incomplete Annotation

Does TransE work in visual domain?


Predicate Prediction



Does TransE work in visual domain?



Demo link: cvpr.zl.io

Demo link: cvpr.zl.io

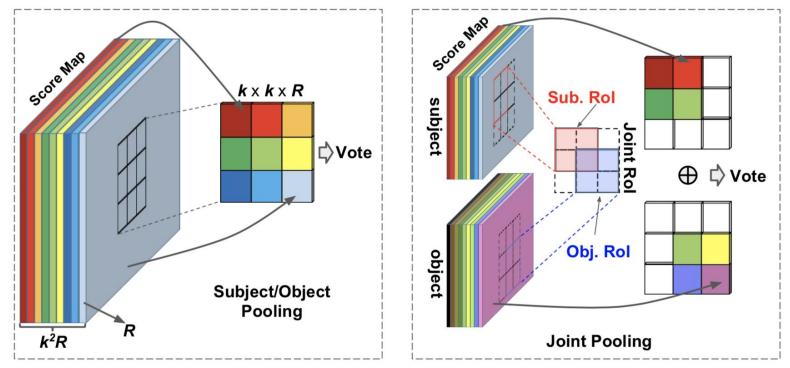

Dataset	VRD [27]					VG [23]						
Task	Phrase Det.		Relation Det.		Retrieval		Phrase Det.		Relation Det.		Retrieval	
Metric	R@50	R@100	R@50	R@100	Rr@5	Med r	R@50	R@100	R@50	R@100	Rr@5	Med r
VisualPhrase [37]	0.54	0.63	_	_	3.51	204	3.41	4.27	_	_	11.42	18
DenseCap [19]	0.62	0.77	_	_	4.16	199	3.85	5.01	_	_	12.95	13
Lu's-V [27]	2.24	2.61	1.58	1.85	2.82	211	-	_	_	_	_	_
Lu's-VLK [27]	16.17	17.03	13.86	14.70	8.75	137	-	-	-	_	-	_
VTransE	19.42	22.42	14.07	15.20	7.89	41	9.46	10.45	5.52	6.04	14.65	7
VTransE-2stage	18.45	21.29	13.30	14.64	7.14	41	8.73	10.11	4.97	5.48	12.82	12
Random	0.06	0.11	7.14×10^{-3}	1.43×10^{-2}	2.95	497	0.04	0.07	1.25×10^{-3}	2.50×10^{-3}	3.45	1.28×10^4

Phrase Detection: only need to detect the <subject, object> joint box *Relation Detection:* detect both subject and object *Retrieval:* given a query relation, return images

VTransE were best separate models in 2017. ([Li et al. and Dai et al. CVPR'17 are (partially joint models)

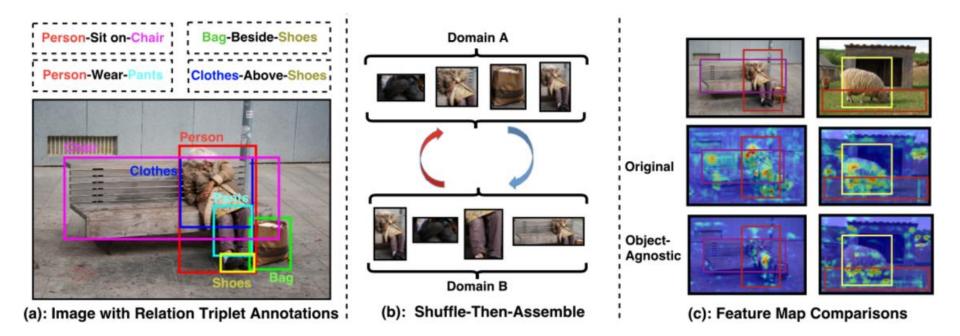
New state-of-the-art: Neural MOTIF (Zellers et al. CVPR'18, 27.2/30.3 R@50/R@100)

Bad retrieval on VR is due to incomplete annotation

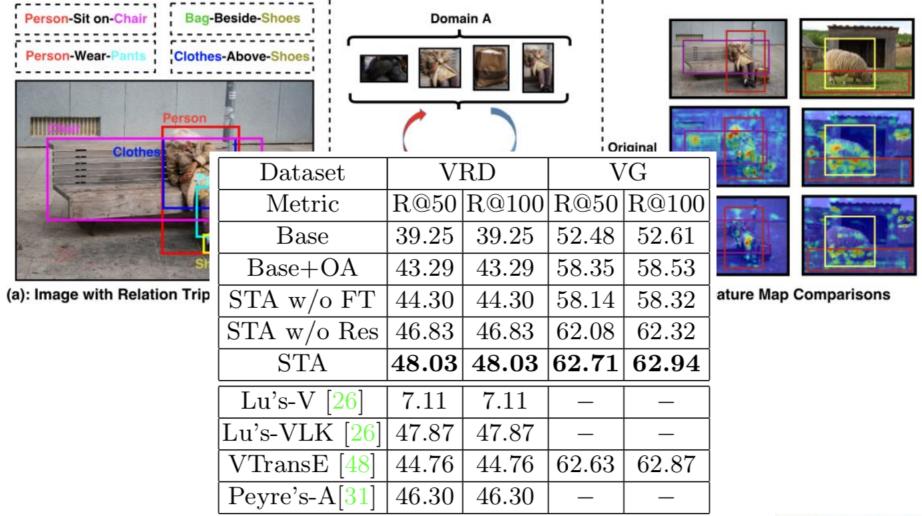


Two follow-up works

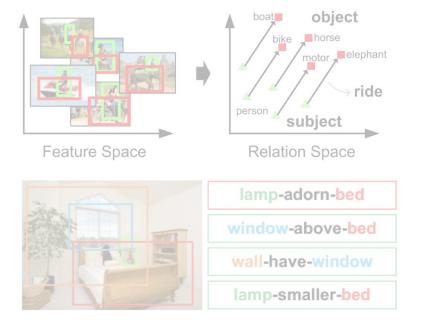
- The key: pure visual pair model $f(x_1, x_2)$
- f(x1,x2) underpins almost every VRD
- Evaluation: predicate classification
- 1. Faster pairwise modeling (ICCV'17)
- 2. Object-agnostic modeling (ECCV'18 submission)

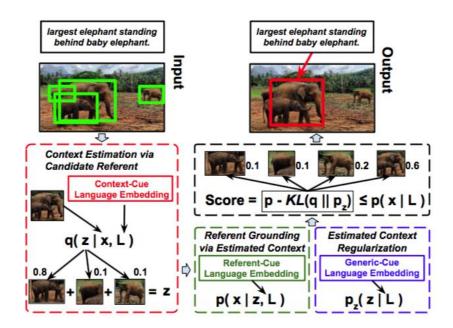

Parallel Pairwise R-FCN (Zhang et al. ICCV'17)

	VRD R@50	VRD R@100	VG R@50	VG R@100
VTransE	44.76	44.76	62.63	62.87
PPR-FCN	47.43	47.43	64.17	64.86



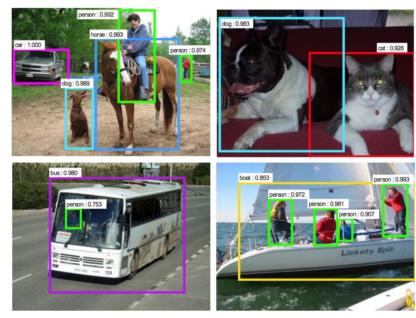
Shuffle-Then-Assemble (Yang et al. 18')


Shuffle-Then-Assemble (Yang et al. 18')


Three Examples

Visual Relation Detection [CVPR'17, ICCV'17]

Compositionality


Referring Expression Grounding [CVPR'

Learning to Reason

What is grounding? Object Detection

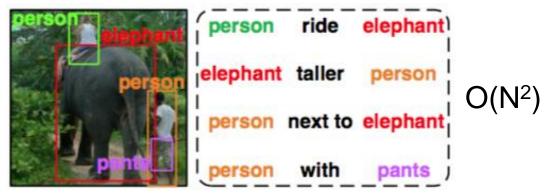
R Girshick ICCV'15

Link words (from a fixed vocab.) to visual objects

O(N)

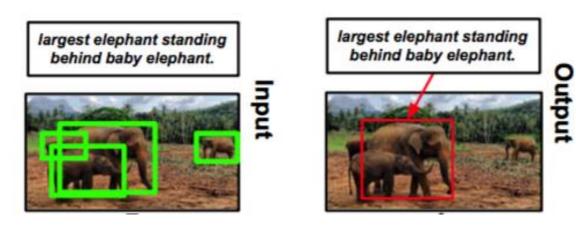
What is grounding? Phrase-to-Region

A man in a gray sweater speaks to two women and a man pushing a shopping cart through Walmart.

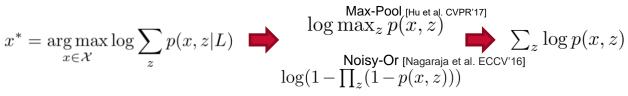

Plummer et al. ICCV'15

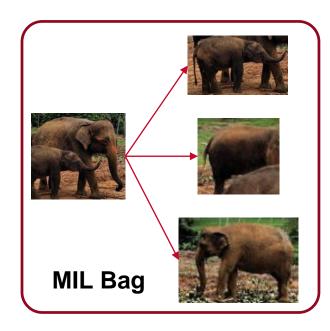
Link phrases to visual objects

O(N)


What is grounding? Visual Relation Detection

Zhang et al. CVPR'17


What's referring expression grounding?



O(2^N)

Prior Work: Multiple Instance Learning

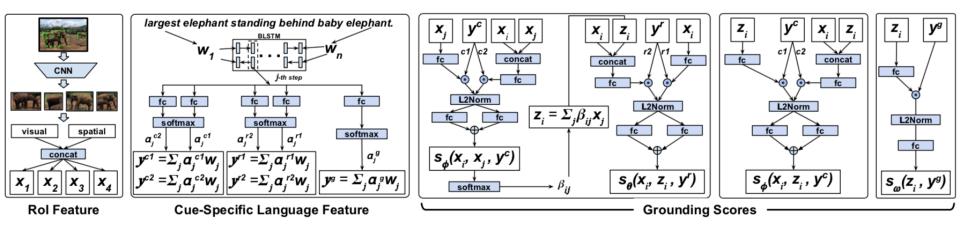
Bad Approximation:

- Context z is not necessarily to be a single region
- Log-sum directly to sum-log is too coarse, i.e., forcing every pair to be equally possible

Our Work: Variational Context [Zhang et al CVPR'18]

SGD Details

Network Details


$$\mathcal{Q}(x,L) \propto \mathcal{S}(x,L) = s_{\theta}(x,L) - s_{\phi}(x,L) + s_{\omega}(x,L)$$

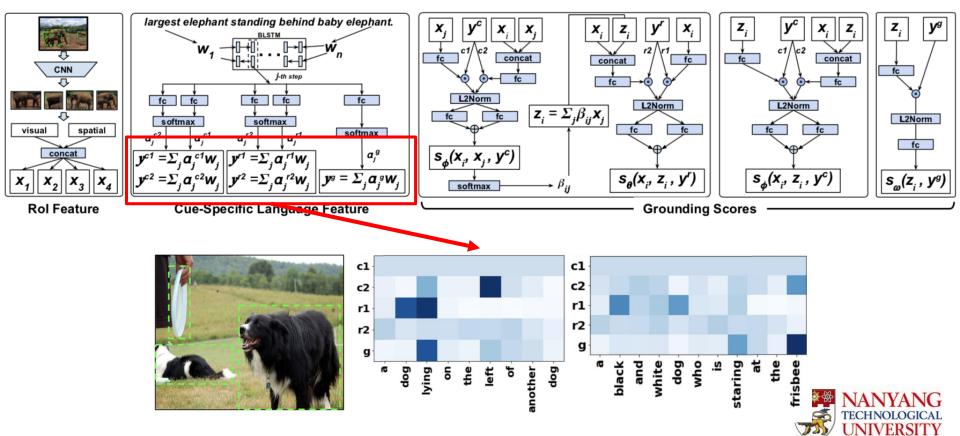
$$\downarrow$$

$$\mathbf{z}_{i} = \sum_{j} \operatorname{softmax}_{j} \left(s_{\phi}(\mathbf{x}_{i},\mathbf{x}_{j},\mathbf{y}^{c}) \right) \mathbf{x}_{j}$$

$$(\mathbf{z}_{i} \in \mathbf{s}_{\theta}(\mathbf{x}_{i},\mathbf{z}_{i},\mathbf{y}^{c}) - s_{\psi}(x,L) \leftarrow s_{\psi}(\mathbf{z}_{i},\mathbf{z}_{i},\mathbf{y}^{c}) - s_{\psi}(x,L) \leftarrow s_{\psi}(\mathbf{z}_{i},\mathbf{z}_{i},\mathbf{z}^{c}) - s_{\psi}(x,L) \leftarrow s_{\psi}(\mathbf{z}_{i},\mathbf{z}^{c}) - s_{\psi}(x,L) \leftarrow s_{\psi}(\mathbf{z}_{i},\mathbf{z}^{c}) - s_{\psi}(x,L) \leftarrow s_{\psi}(\mathbf{z}_{i},\mathbf{z}^{c}) - s_{\psi}(\mathbf{z}^{c}) - s_{\psi}(\mathbf{z}^{c},\mathbf{z}^{c}) - s_{\psi}(\mathbf{z}^{c},\mathbf{z}^$$

 $s_{\theta}(x,L) \leftarrow s_{\theta}(\mathbf{x}_i, \mathbf{z}_i, \mathbf{y}^r) \quad s_{\phi}(x,L) \leftarrow s_{\phi}(\mathbf{x}_i, \mathbf{z}_i, \mathbf{y}^c) \quad s_{\omega}(x,L) \leftarrow s_{\omega}(\mathbf{z}_i, \mathbf{y}^g)$

Network Details


$$\mathcal{Q}(x,L) \propto \mathcal{S}(x,L) = s_{\theta}(x,L) - s_{\phi}(x,L) + s_{\omega}(x,L)$$

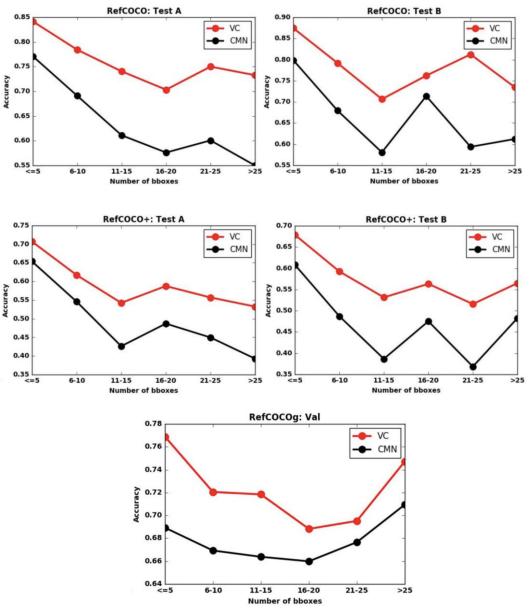
$$\downarrow$$

$$\mathbf{z}_{i} = \sum_{j} \operatorname{softmax}_{j} \left(s_{\phi}(\mathbf{x}_{i},\mathbf{x}_{j},\mathbf{y}^{c}) \right) \mathbf{x}_{j}$$

$$r_{i}(L) \leftarrow s_{\theta}(\mathbf{x}_{i},\mathbf{z}_{i},\mathbf{y}^{c}) - s_{\phi}(x,L) \leftarrow s_{\phi}(\mathbf{x}_{i},\mathbf{z}_{i},\mathbf{y}^{c}) - s_{\phi}(x,L) \leftarrow s_{\phi}(\mathbf{z}_{i},\mathbf{z}_{i},\mathbf{y}^{c}) - s_{\phi}(x,L) \leftarrow s_{\phi}(\mathbf{z}_{i},\mathbf{z}_{i},\mathbf{z}_{i},\mathbf{y}^{c}) - s_{\phi}(x,L) \leftarrow s_{\phi}(\mathbf{z}_{i},\mathbf{z},\mathbf{z}_{i},\mathbf{z}_{i},$$

 $s_{\theta}(x,L) \leftarrow s_{\theta}(\mathbf{x}_i, \mathbf{z}_i, \mathbf{y}^r) \quad s_{\phi}(x,L) \leftarrow s_{\phi}(\mathbf{x}_i, \mathbf{z}_i, \mathbf{y}^c) \quad s_{\omega}(x,L) \leftarrow s_{\omega}(\mathbf{z}_i, \mathbf{y}^g)$

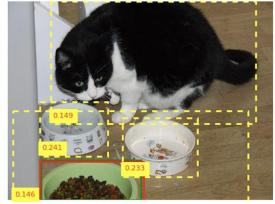
Grounding Accuracy


			Our Baselines						
Split	MMI [25]	NegBag [26]	Attr [19]	CMN [11]	Speaker [46]	Listener [46]	VC w/o reg	VC w/o α	VC
Test A	71.72	75.6	78.85	75.94	78.95	78.45	75.59	74.03	78.98
Test B	71.09	78.0	78.07	79.57	80.22	80.10	79.69	78.27	82.39
Test A	58.42		61.47	59.29	64.60	63.34	60.76	57.61	62.56
Test B	51.23		57.22	59.34	59.62	58.91	60.14	54.37	62.90
Val	62.14	68.4	69.83	69.30	72.63	72.25	71.05	65.13	73.98
Test A	64.90	58.6	72.08	71.03	72.95	72.95	70.78	70.73	73.33
Test B	54.51	56.4	57.29	65.77	63.43	62.98	65.10	64.63	67.44
Test A	54.03		57.97	54.32	60.43	59.61	56.82	53.33	58.40
Test B	42.81		46.20	47.76	48.74	48.44	51.30	46.88	53.18
Val	45.85	39.5	52.35	57.47	59.51	58.32	60.95	55.72	62.30
	Test A Test B Test A Test B Val Test A Test B Test A Test B	Test A 71.72 Test B 71.09 Test A 58.42 Test B 51.23 Val 62.14 Test B 54.51 Test A 54.03 Test B 42.81	Test A71.7275.6Test B71.0978.0Test A58.42—Test B51.23—Val62.1468.4Test A64.9058.6Test B54.5156.4Test A54.03—Test B42.81—	SplitMMI [25]NegBag [26]Attr [19]Test A71.7275.678.85Test B71.0978.078.07Test A58.42—61.47Test B51.23—57.22Val62.1468.469.83Test A64.9058.672.08Test B54.5156.457.29Test A54.03—57.97Test B42.81—46.20	Test A71.7275.678.8575.94Test B71.0978.078.0779.57Test A58.4261.4759.29Test B51.2357.2259.34Val62.1468.469.8369.30Test A64.9058.672.0871.03Test B54.5156.457.2965.77Test A54.0357.9754.32Test B42.8146.2047.76	SplitMMI [25]NegBag [26]Attr [19]CMN [11]Speaker [46]Test A71.7275.678.8575.9478.95Test B71.0978.078.0779.5780.22Test A58.42—61.4759.2964.60Test B51.23—57.2259.3459.62Val62.1468.469.8369.3072.63Test A64.9058.672.0871.0372.95Test B54.5156.457.2965.7763.43Test A54.03—57.9754.3260.43Test B42.81—46.2047.7648.74	SplitMMI [25]NegBag [26]Attr [19]CMN [11]Speaker [46]Listener [46]Test A71.7275.678.8575.9478.9578.45Test B71.0978.0078.0779.5780.2280.10Test A58.42—61.4759.2964.6063.34Test B51.23—57.2259.3459.6258.91Val62.1468.469.8369.3072.6372.25Test A64.9058.672.0871.0372.9572.95Test B54.5156.457.2965.7763.4362.98Test A54.03—57.9754.3260.4359.61Test B42.81—46.2047.7648.7448.44	SplitMMI [25]NegBag [26]Attr [19]CMN [11]Speaker [46]Listener [46]VC w/o regTest A71.7275.678.8575.9478.9578.4575.59Test B71.0978.078.0779.5780.2280.1079.69Test A58.42—61.4759.2964.6063.3460.76Test B51.23—57.2259.3459.6258.9160.14Val62.1468.469.8369.3072.6372.2571.05Test A64.9058.672.0871.0372.9572.9570.78Test B54.5156.457.2965.7763.4362.9865.10Test A54.03—57.9754.3260.4359.6156.82Test B42.81—46.2047.7648.7448.4451.30	SplitMMI [25]NegBag [26]Attr [19]CMN [11]Speaker [46]Listener [46]VC w/o regVC w/o αTest A71.7275.678.8575.9478.9578.4575.5974.03Test B71.0978.0078.0779.5780.2280.1079.6978.27Test A58.4261.4759.2964.6063.3460.7657.61Test B51.2357.2259.3459.6258.9160.1454.37Val62.1468.469.8369.3072.6372.2571.0565.13Test A64.9058.672.0871.0372.9572.9570.7870.73Test B54.5156.457.2965.7763.4362.9865.1064.63Test A54.0357.9754.3260.4359.6156.8253.33Test B42.8146.2047.7648.7448.4451.3046.88

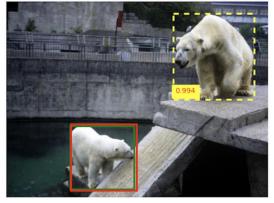
The best VGG SINGLE model to date.

Best ResNet Model: Licheng Yu et al. MAttNet: Modular Attention Network for Referring Expression Comprehension. CVPR'18

More effective than MIL



R. Hu et al. Modeling relationships in referential expressions with compositional mod- ular networks. In CVR



Qualitative Results

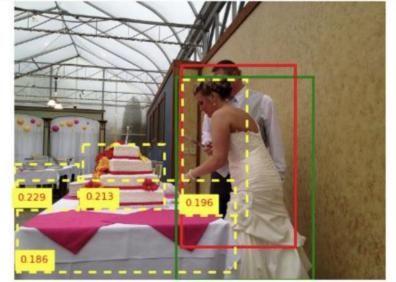
a green food dish with cat food

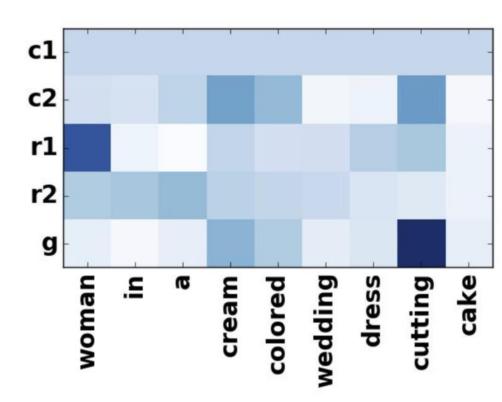
a polar bear at the bottom of a ramp

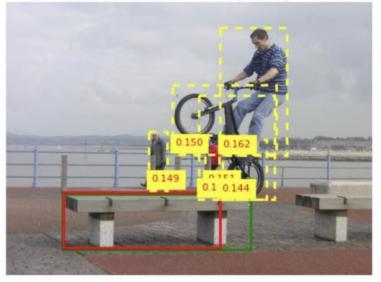
a man with one arm is pedaling a bike

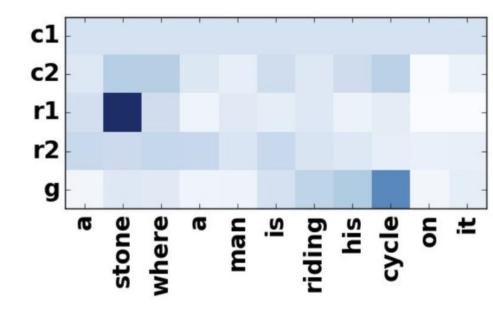
a green boat afloat near a flooded river lined with refugees

a man in a white shirt

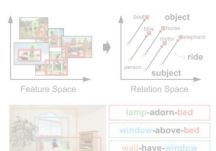



A dark horse between three lighter horses

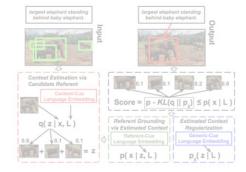



woman in a cream colored wedding dress cutting cake

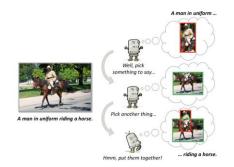
a stone where a man is riding his cycle on it



Three Examples

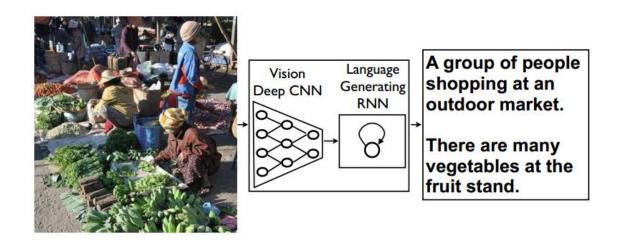

Visual Relation Detection [CVPR'17, ICCV'17]

Compositionality


lamp-smaller-bed

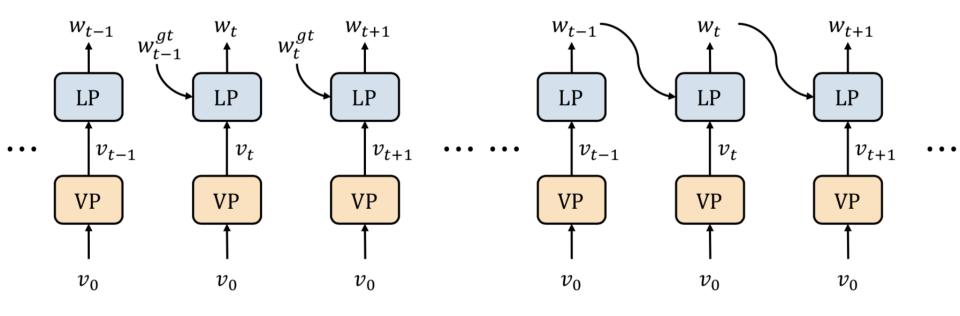
Referring Expression Grounding [CVPR'18]

Learning to Reason



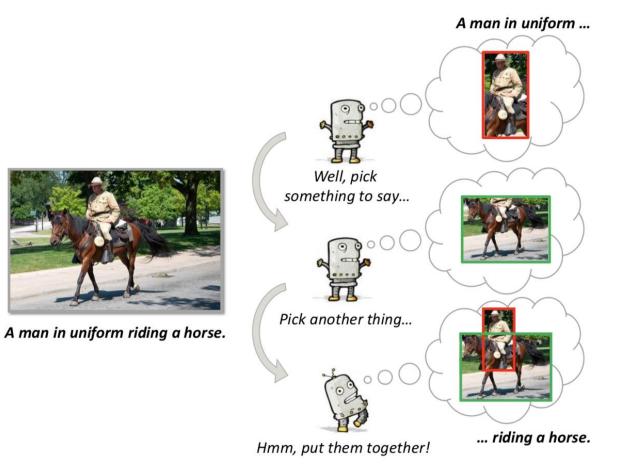
Learning to Reason

Neural Image Captioning


GoogleNIC (Vinyals et al. 2014)

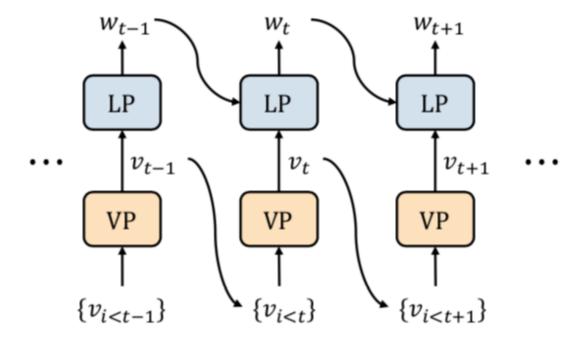
Encoder (Image→CNN→Vector) → *Decoder* (Vector→Word Seq.)

Sequence-level Image Captioning

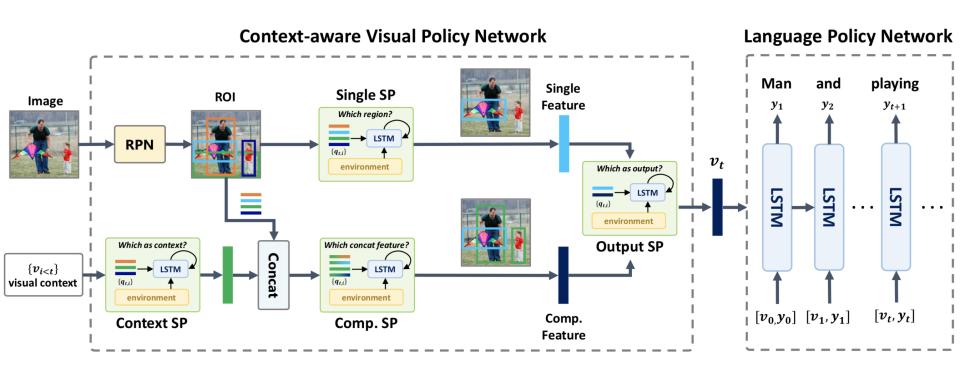


(a) Traditional Framework

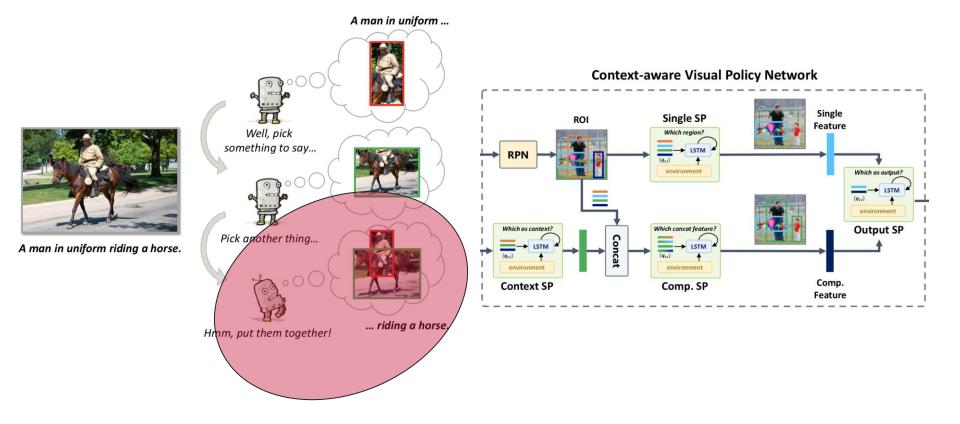
(b) RL-based Framework



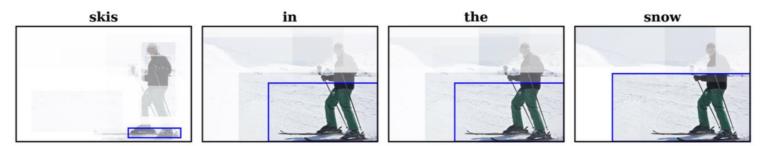
Context in Image Captioning


Context-Aware Visual Policy Network

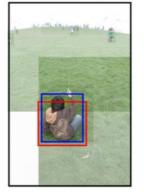
(c) Our Framework

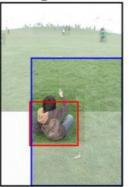


Context-Aware Policy Network



Context-Aware Policy Network



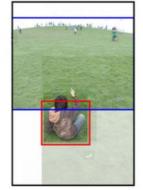


the

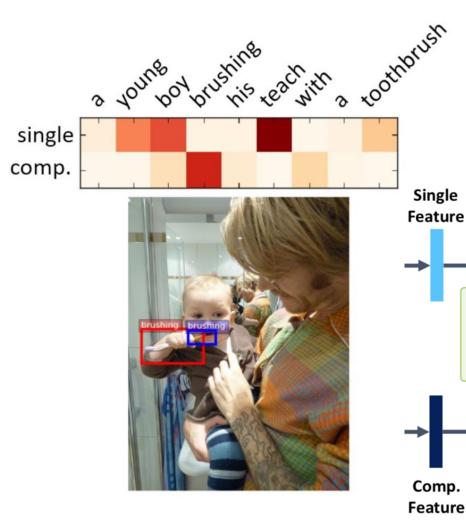
grass

man

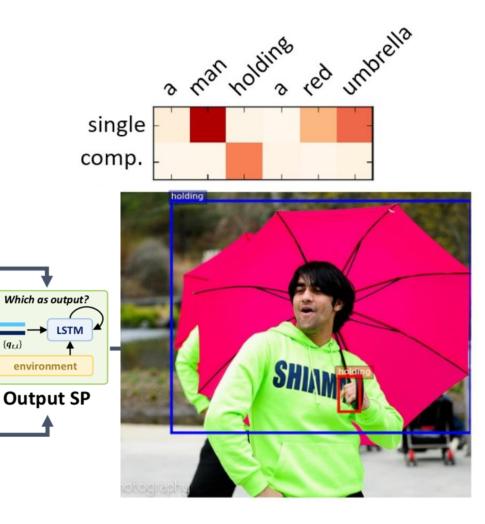
flying

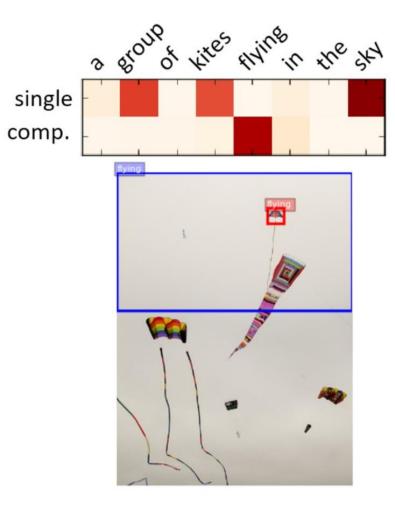


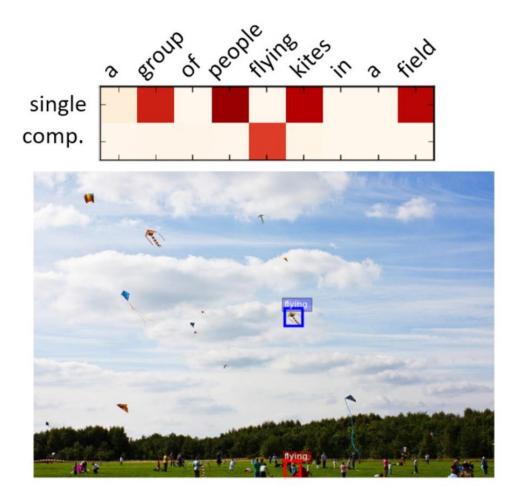
sitting


in

kite





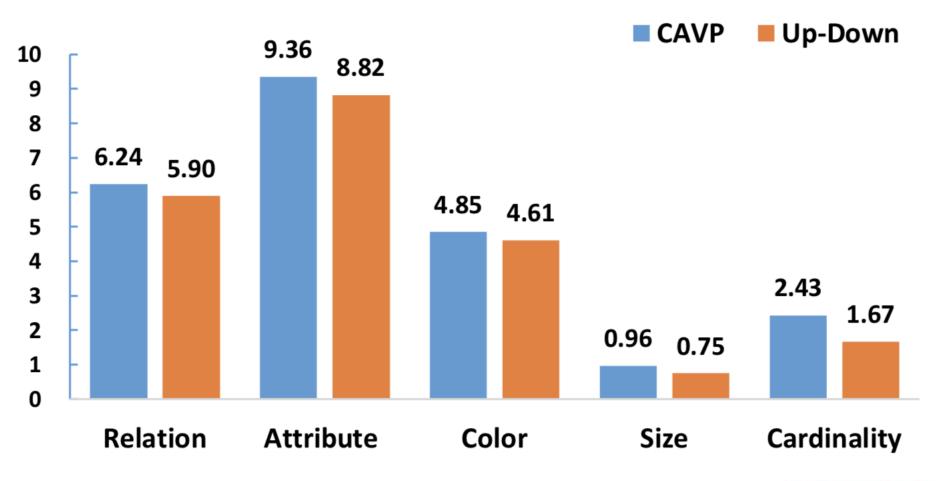

 $\{q_{t,i}\}$

environment

MS-COCO Leaderboard

#	User	Entries	Date of	BLEU-4		METEOR		ROUGE-L		CIDEr-D	
			Last Entry	c5 🔺	c40 ▲						
1	TencentAl.v2	5	12/15/17	0.386 (1)	0.701 (1)	0.286 (1)	0.377 (1)	0.587 (1)	0.737 (1)	1.254 (1)	1.278 (1)
2	AnonymousTeam	5	11/13/17	0.380 (3)	0.692 (2)	0.282 (3)	0.372 (3)	0.582 (3)	0.731 (2)	1.229 (3)	1.251 (2)
3	TingYao	4	09/03/17	0.382 (2)	0.691 (3)	0.283 (2)	0.373 (2)	0.582 (2)	0.729 (4)	1.232 (2)	1.246 (3)
4	LiuDaqing	3	04/08/18	0.379 (4)	0.690 (4)	0.281 (4)	0.370 (5)	0.582 (4)	0.731 (3)	1.216 (4)	1.238 (4)

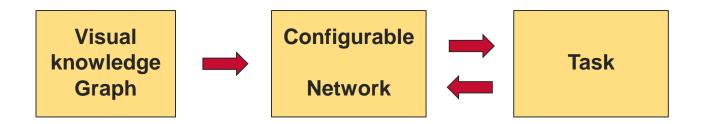
We are **SINGLE** model.


Compare with Academic Peers

Model	B@4	М	R	С	S
Google NIC[35]	32.1	25.7	-	99.8	-
Hard-Attention[38]	24.3	23.9	-	-	-
Adaptive[23]	33.2	26.6	54.9	108.5	19.4
LSTM-A[39]	32.5	25.1	53.8	98.6	-
PG-SPIDEr[22]	32.2	25.1	54.4	100.0	-
Actor-Critic[43]	34.4	26.7	55.8	116.2	-
EmbeddingReward[28]	30.4	25.1	52.5	93.7	-
SCST[29]	35.4	27.1	56.6	117.5	-
StackCap[9]	36.1	27.4	56.9	120.4	20.9
Up-Down[2]	36.3	27.7	56.9	120.1	21.4
Ours	38.6	28.3	58.5	126.3	21.6

Table 2: Performance comparisons on MS-COCO "Karpathy" offline split. B@n is short for BLEU-n, M is short for ME-TEOR, and C is short for CIDEr.

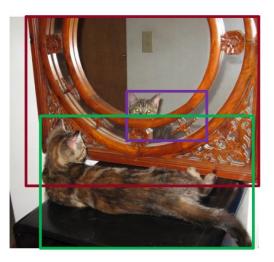
Detail Comparison with Up-Down



P. Anderson et al. Bottom-up and top-down attention for image captioning and VQA. In CVPR'18

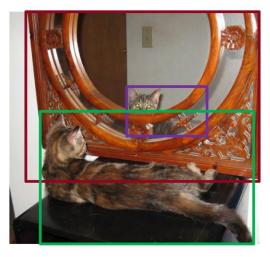
Visual Reasoning: A Desired Pipeline

• Configurable NN for various reasoning applications:


Captioning, VQA, and Visual Dialogue

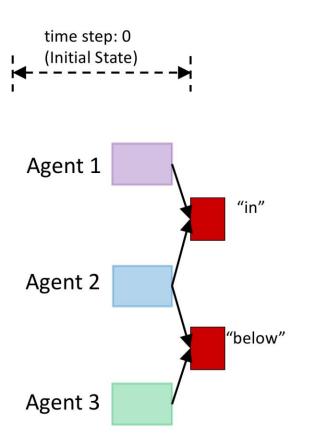
Visual Reasoning: Future Directions

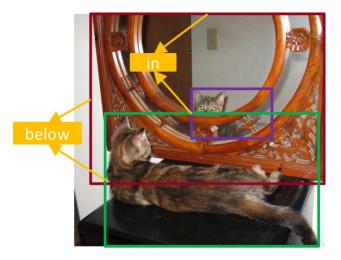
- Compositionality
 - Good SG generation
 - Robust SG representation
 - Task-specific SG generation
- Learning to reason
 - Task-specific network
 - Good policy-gradient RL for large SG

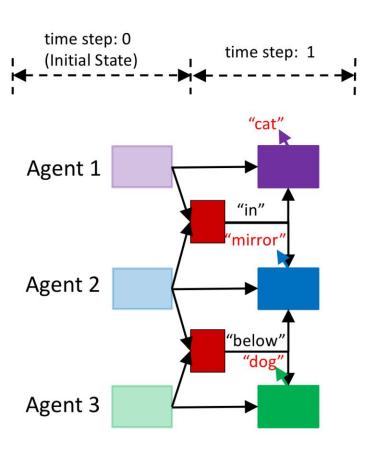


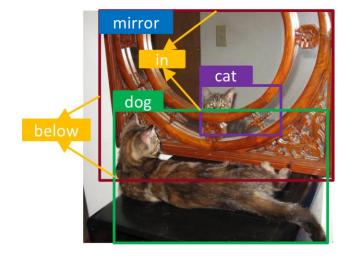
time step: 0 (Initial State)

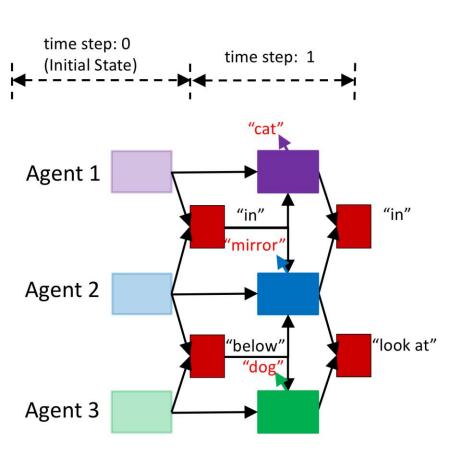
Agent 1

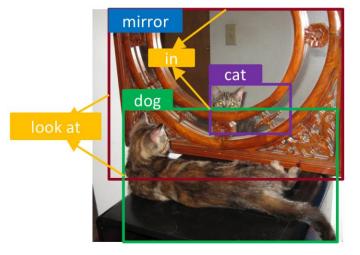

Agent 2

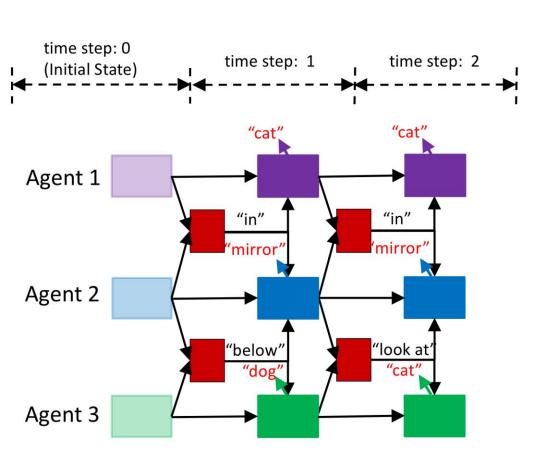


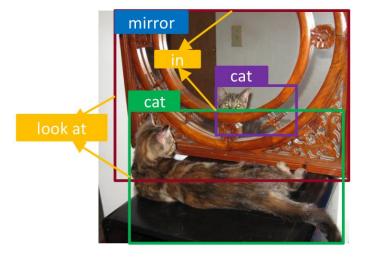




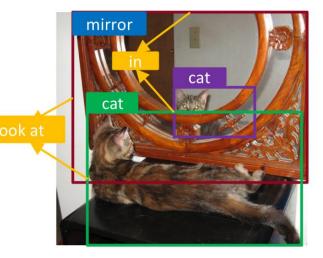


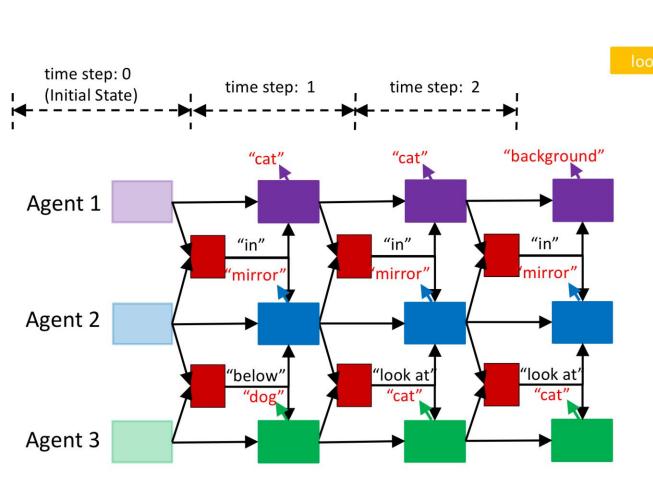


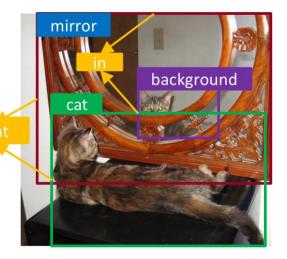


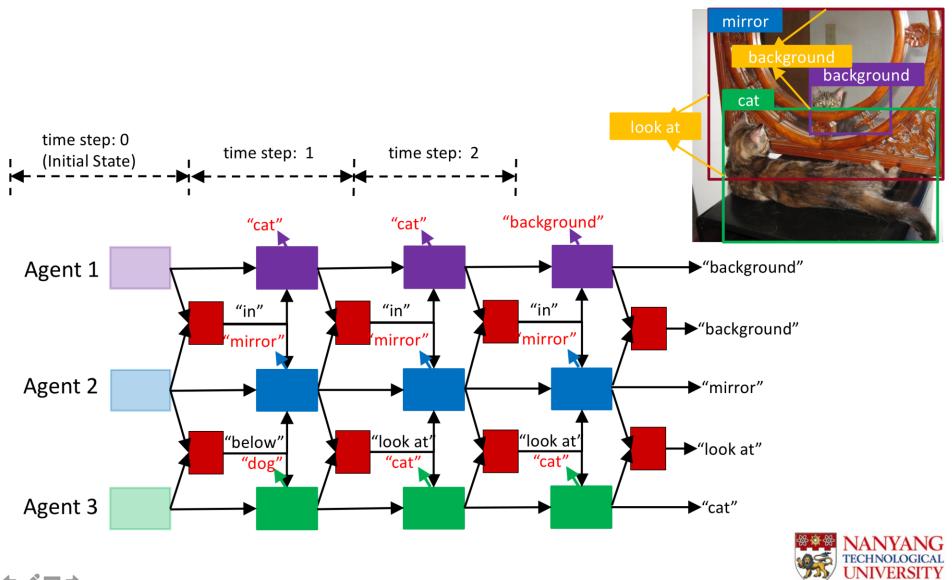


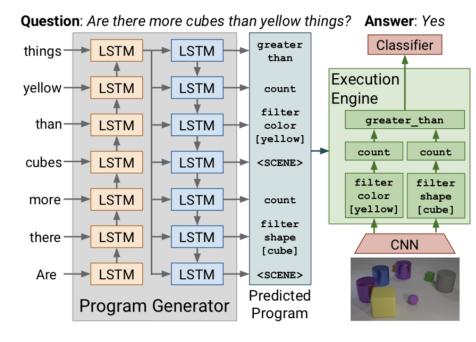




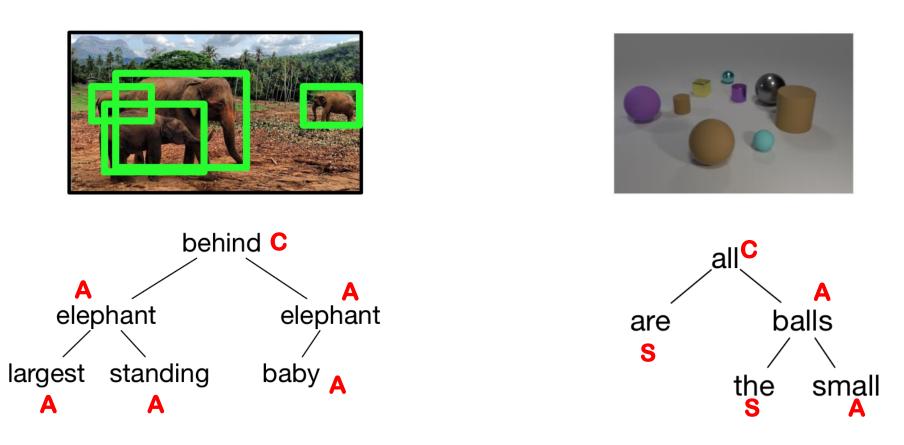








Hard-design X Module Network


Jonson et al. ICCV'17 Hu et al. ICCV'17 Mascharka et al. CVPR'18

• $Q \rightarrow Program not X$

- Module X but harddesign
- CLEVER hacker
- Poor generalization to COCO-VQA

Design-Free Module Network

