Accelerated Stochastic Subgradient Methods under Local Error Bound Condition

Yi Xu

yi-xu@uiowa.edu Computer Science Department The University of Iowa April 18, 2018

Co-authors: Tianbao Yang, Qihang Lin

Outline

- Introduction
- 2 Accelerated Stochastic Subgradient Methods
- Applications and experiments
- Conclusion

Outline

- Introduction
- 2 Accelerated Stochastic Subgradient Methods
- 3 Applications and experiments
- Conclusion

Example in machine learning

Table: house price

house	size (sqf)	price (\$1k)
1	68	500
2	220	800
19	359	1500
20	266	820

Linear model:

$$y = f(w) = xw,$$

where y = price, x = size.

Example in machine learning

Table: house price

house	size (sqf)	price (\$1k)
1	68	500
2	220	800
19	359	1500
20	266	820

Linear model:

$$y = f(w) = xw,$$

where y = price, x = size.

$$|y_1 - x_1 w|^2 + |y_2 - x_2 w|^2 + \dots |y_{20} - x_{20} w|^2$$

Least squares regression:

$$\min_{w \in \mathbb{R}} F(w) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{(y_i - x_i w)^2}_{\text{square loss}}$$

Least absolute deviations:

$$\min_{w \in \mathbb{R}} F(w) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{|y_i - x_i w|}_{\text{absolute loss}}$$

High dimensional model:

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n |y_i - \mathbf{x}_i^\top \mathbf{w}| + \lambda ||\mathbf{w}||_1 = \frac{1}{n} ||X\mathbf{w} - \mathbf{y}||_1 + \underbrace{\lambda ||\mathbf{w}||_1}_{\text{regularizer}}$$

- absolute loss is more robust to outliers problem
- ℓ_1 norm regularization is used for feature selection

Least squares regres

Least absolute deviations:

$$\min_{w \in \mathbb{R}} F(w) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{|y_i - x_i w|}_{\text{absolute loss}}$$

High dimensional model:

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n |y_i - \mathbf{x}_i^\top \mathbf{w}| + \lambda ||\mathbf{w}||_1 = \frac{1}{n} ||X\mathbf{w} - \mathbf{y}||_1 + \underbrace{\lambda ||\mathbf{w}||_1}_{\text{regularizer}}$$

- absolute loss is more robust to outliers problem
- ℓ_1 norm regularization is used for feature selection

Least squares regression:

$$\min_{w \in \mathbb{R}} F(w) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{(y_i - x_i w)^2}_{\text{square loss}}$$

Least absolute deviation-smooth

$$\min_{w \in \mathbb{R}} F(w) = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - x_i w|}{\text{absolute loss}}$$

High dimensional model:

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n |y_i - \mathbf{x}_i^\top \mathbf{w}| + \lambda ||\mathbf{w}||_1 = \frac{1}{n} ||X\mathbf{w} - \mathbf{y}||_1 + \underbrace{\lambda ||\mathbf{w}||_1}_{\text{regularizer}}$$

- absolute loss is more robust to outliers problem
- ℓ_1 norm regularization is used for feature selection

Machine learning problems:

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \underbrace{\ell(\mathbf{w}; \mathbf{x}_i, y_i)}_{\text{loss function}} + \underbrace{r(\mathbf{w})}_{\text{regularize}}$$

- Classification:
 - hinge loss: $\ell(\mathbf{w}; \mathbf{x}, y) = \max(0, 1 y\mathbf{x}^{\mathsf{T}}\mathbf{w})$
- Regression:
 - absolute loss: $\ell(\mathbf{w}; \mathbf{x}, y) = |\mathbf{x}^{\mathsf{T}} \mathbf{w} y|$
 - square loss: $\ell(\mathbf{w}; \mathbf{x}, y) = (\mathbf{x}^{\mathsf{T}} \mathbf{w} y)^2$
- Regularizer:
 - ℓ_1 norm: $r(\mathbf{w}) = \lambda ||\mathbf{w}||_1$
 - ℓ_2^2 norm: $r(\mathbf{w}) = \frac{\lambda}{2} ||\mathbf{w}||_2^2$

Convex optimization problem

Problem:

$$\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w})$$

- $F(\mathbf{w}): \mathbb{R}^d \to \mathbb{R}$ is convex
- optimal value: $F(\mathbf{w}_*) = \min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w})$
- optimal solution: w_{*}
- Goal: to find a solution $\widehat{\mathbf{w}}$

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) \le \epsilon$$

• ϵ -optimal solution: $\widehat{\mathbf{w}}$

Complexity measure

 Most optimization algorithms are iterative

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \nabla \mathbf{w}_t$$

• Iteration complexity: number of iterations $T(\epsilon)$ that

$$F(\mathbf{w}_T) - F(\mathbf{w}_*) \le \epsilon$$

where $0 < \epsilon \ll 1$.

- Time complexity: $T(\epsilon) \times C(n,d)$
 - C(n,d): Per-iteration cost

Gradient Descent (GD)

- Problem: $\min_{w \in \mathbb{R}} F(w)$
- $w_{t+1} = \arg\min_{\mathbf{w} \in \mathbb{R}} F(w_t) + \langle \nabla F(w_t), \mathbf{w} w_t \rangle + \frac{L}{2} ||\mathbf{w} w_t||_2^2$
- **GD**: initial $w_0 \in \mathbb{R}$, for t = 0, 1, ...

$$w_{t+1} = w_t - \eta \nabla F(w_t)$$

- $\eta = \frac{1}{L} > 0$: step size.
- simple & easy to implement

After
$$T = O\left(\frac{1}{\epsilon}\right)$$
, $F(\mathbf{w}_T) - F(\mathbf{w}_*) \le \epsilon$

Gradient Descent (GD)

smooth

- Problem: $\min_{w \in \mathbb{R}} F(w)$
- $w_{t+1} = \arg\min_{\mathbf{w} \in \mathbb{R}} F(w_t) + \langle \nabla F(w_t), \mathbf{w} w_t \rangle + \frac{L}{2} ||\mathbf{w} w_t||_2^2$
- **GD**: initial $w_0 \in \mathbb{R}$, for t = 0, 1, ...

$$w_{t+1} = w_t - \eta \nabla F(w_t)$$

- $\eta = \frac{1}{L} > 0$: step size.
- simple & easy to implement

After
$$T = O\left(\frac{1}{\epsilon}\right)$$
, $F(\mathbf{w}_T) - F(\mathbf{w}_*) \le \epsilon$

Gradient Descent (GD)

$$F(w) \le F(w_t) + \langle \nabla F(w_t), w - w_t \rangle + \frac{L}{2} ||w - w_t||_2^2$$

- Problem: $\min_{w \in \mathbb{R}} F(w)$
- $w_{t+1} = \arg\min_{\mathbf{w} \in \mathbb{R}} F(w_t) + \langle \nabla F(w_t), \mathbf{w} w_t \rangle + \frac{L}{2} ||\mathbf{w} w_t||_2^2$
- **GD**: initial $w_0 \in \mathbb{R}$, for t = 0, 1, ...

$$w_{t+1} = w_t - \eta \nabla F(w_t)$$

- $\eta = \frac{1}{L} > 0$: step size.
- simple & easy to implement

After
$$T = O\left(\frac{1}{\epsilon}\right)$$
, $F(\mathbf{w}_T) - F(\mathbf{w}_*) \le \epsilon$

Accelerated Gradient Descent (AGD)

- Nesterov's momentum trick
- **AGD**: initial w_0 , $v_1 = w_0$, for t = 1, 2, ...:

$$\mathbf{w}_{t} = \mathbf{v}_{t} - \eta \nabla F(\mathbf{v}_{t})$$
$$\mathbf{v}_{t+1} = \mathbf{w}_{t} + \beta_{t}(\mathbf{w}_{t} - \mathbf{w}_{t-1})$$

Nesterov's Accelerated Gradient

Theorem ([Beck and Teboulle, 2009])

Let
$$\eta = \frac{1}{L}$$
, $\beta_t = \frac{\theta_t - 1}{\theta_{t+1}} \in (0, 1)$ with $\theta_{t+1} = \frac{1 + \sqrt{1 + 4\theta_t^2}}{2}$ and $\theta_1 = 1$, then after $T = O\left(\frac{1}{\sqrt{\epsilon}}\right)$, $F(\mathbf{w}_T) - F(\mathbf{w}_*) \le \epsilon$

SubGradient (SG) descent

- Problem: $\min_{w \in \mathbb{R}} F(w)$
- **SG**: initial w_0 , for t = 0, 1, ...

$$w_{t+1} = w_t - \eta \partial F(w_t)$$

decrease η every iteration.

After
$$T = O\left(\frac{1}{\epsilon^2}\right)$$
, $F(\mathbf{w}_T) - F(\mathbf{w}_*) \le \epsilon$

SubGradient (SG) descent

non-smooth

- Problem: $\min_{w \in \mathbb{R}} F(w)$
- **SG**: initial w_0 , for t = 0, 1, ...

$$w_{t+1} = w_t - \eta \partial F(w_t)$$

• decrease η every iteration.

After
$$T = O\left(\frac{1}{\epsilon^2}\right)$$
, $F(\mathbf{w}_T) - F(\mathbf{w}_*) \le \epsilon$

Summary of time complexity

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{w}; \mathbf{x}_i, y_i)$$

Method	Time complexity	Smooth
GD	$O\left(\frac{nd}{\epsilon}\right)$	YES
AGD	$O\left(\frac{nd}{\sqrt{\epsilon}}\right)$	YES
SG	$O\left(\frac{nd}{\epsilon^2}\right)$	NO

GD: Gradient Descent

AGD: Accelerated Gradient Descent

SG: SubGradient descent

Challenge of deterministic methods

Computing gradient is expensive

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{w}; \mathbf{x}_i, y_i)$$

$$\nabla F(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\mathbf{w}; \mathbf{x}_i, y_i)$$

- When n/d is large: Big Data
- To compute the gradient, need to pass through all data points.
- At each updating step, need this expensive computation.

Stochastic Gradient Descent (SGD)

• **SGD**: initial w_0 , for t = 0, 1, ...

sample one data
$$\xi_t = (\mathbf{x}_t, y_t)$$

 $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla f(\mathbf{w}_t; \xi_t)$

- decrease η every iteration
- simple & memory efficient
- problem: variance of stochastic gradient, slow convergence

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) := \mathbf{E}_{\xi \sim \mathcal{P}}[f(\mathbf{w}; \xi)]$$

Theorem ([Nemirovski et al., 2009])

After $T = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, $F(w_T) - F(w_*) \le \epsilon$ with a probability $1 - \delta$.

Stochastic SubGradient (SSG) descent

Problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) = \mathbf{E}_{\xi \sim \mathcal{P}}[f(\mathbf{w}; \xi)]$$

• **SSG**: initial w_0 , for t = 0, 1, ...

sample one data ξ_t

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \partial f(\mathbf{w}_t; \boldsymbol{\xi}_t)$$

• decrease η every iteration

Theorem ([Hazan and Kale, 2011])

After $T = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, $F(w_T) - F(w_*) \le \epsilon$ with a probability $1 - \delta$.

Summary of time complexity

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{w}; \mathbf{x}_i, y_i)$$

Method	Time complexity	Smooth
SGD	$\widetilde{O}\left(\frac{d}{\epsilon^2}\right)$	YES
SSG	$\widetilde{O}\left(\frac{d}{\epsilon^2}\right)$	NO

SGD: Stochastic Gradient Descent SSG: Stochastic SubGradient descent

SGD can not enjoy the smoothness property to obtain faster rate.

How can we do better?

- Assume Strong Global Assumptions (e.g., strong convexity, smoothness): smaller family of problems
- Strongly convex problems

$$F(\mathbf{x}) \ge F(\mathbf{y}) + \partial F(\mathbf{y})^{\top} (\mathbf{x} - \mathbf{y}) + \frac{\lambda}{2} ||\mathbf{x} - \mathbf{y}||_2^2$$

- $\lambda > 0$: strong convexity parameter.
- SSG with $\eta_t = 1/(\lambda t)$ enjoys $O\left(\frac{1}{\lambda \epsilon}\right)$ iteration complexity.

Strong convexity is sometimes too good to be true

Non-smooth and non-strongly problems in ML

Robust Regression:

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} |\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - y_i|^p, \quad p \in [1, 2)$$

Sparse Classification:

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i) + \lambda ||\mathbf{w}||_1$$

Outline

- 1 Introduction
- 2 Accelerated Stochastic Subgradient Methods
- 3 Applications and experiments
- 4 Conclusion

The contributions of our paper

Y. Xu, Q. Lin, and T. Yang. **Stochastic convex optimization: Faster local growth implies faster global convergence.** In ICML, pages 3821-3830, 2017.

- A New Theory of Stochastic Convex Optimization
 - A Broader Family of Conditions: Local Error Bound Condition
 - Faster Global Convergence under Local Error Bound Condition
 - Applications in Machine Learning

Local error bound (LEB) condition

Definition

If there exists a constant c > 0 and a **local growth rate** $\theta \in (0, 1]$ such that:

$$\|\mathbf{w} - \mathbf{w}_*\|_2 \le c(F(\mathbf{w}) - F(\mathbf{w}_*))^{\theta}, \quad \forall \mathbf{w} \in \mathcal{S}_{\epsilon},$$
 (1)

then we say $F(\mathbf{w})$ satisfies a **local error bound condition** (also know as local growth condition).

- $S_{\epsilon} = \{ \mathbf{w} \in \mathbb{R}^d : F(\mathbf{w}) F_* \le \epsilon \}$: ϵ -sublevel set.
- A local sharpness measure of the function

Sketch of accelerated algorithm

Accelerated Stochastic SubGradient (ASSG) method

1: Set η_1 , K and t

2: **for** k = 1, ..., K **do**

3: $\mathbf{w}_{k} = SSG(\mathbf{w}_{k-1}, \eta_{k}, D_{k}, t)$

4: $\eta_{k+1} = \eta_k/2, D_{k+1} = D_k/2$

5: end for

$$SSG(\mathbf{w}_1, \eta, D, t)$$
: for $\tau = 1, \dots, t$

$$\mathbf{w}_{\tau+1} = \mathsf{Proj}_{\|\mathbf{w} - \mathbf{w}_1\|_2 \le D} [\mathbf{w}_{\tau} - \eta \partial f_{\tau}(\mathbf{w}_{\tau}, \mathbf{z}_{\tau})]$$

Output: $\widehat{\mathbf{w}} = \sum_{\tau=1}^{t} \mathbf{w}_{\tau}/t$

Theorem [Xu et al., 2017]

After $T = O\left(t\log\left(\frac{1}{\epsilon}\right)\right)$ iterations with $t \ge \frac{\log(1/\delta)G^2c^2}{\epsilon^{2(1-\theta)}}$, $F(\mathbf{w}_K) - F_* \le 2\epsilon$ with a probability $1 - \delta$.

Practical Variant: ASSG with Restarting (RASSG)

Setting $t \ge \frac{\log(1/\delta)G^2c^2}{\epsilon^{2(1-\theta)}}$ requires c, which is usually unknown

A Practical Variant:

- 1: **Input**: $D_1^{(1)}$, t_1 , $\mathbf{w}^{(0)}$ and $\eta_1 = \epsilon_0/(3G^2)$
- 2: **for** s = 1, 2, ..., S **do**
- 3: Let $\mathbf{w}^{(s)} = \mathsf{ASSG}(\mathbf{w}^{(s-1)}, K, t_s, D_1^{(s)})$
- 4: Let $t_{s+1} = t_s 2^{2(1-\theta)}$, $D_1^{(s+1)} = D_1^{(s)} 2^{1-\theta}$
- 5: end for
- another level of restarting
- increasing t by a factor of $2^{2(1-\theta)}$
- iteration complexity remains the same

Summary of time complexity

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) = \mathrm{E}_{\xi \sim \mathcal{P}}[f(\mathbf{w}; \xi)]$$

Table: Time complexities for non-smooth stochastic optimization methods¹

Method	Time complexity	Condition
SSG	$O\left(\frac{d}{\epsilon^2}\right)$	Stochastic structure
ASSG	$\widetilde{O}\left(rac{d}{\epsilon^{2(1- heta)}} ight)$	Stochastic structure and LEB

SSG: Stochastic SubGradient descent

ASSG: Accelerated Stochastic SubGradient descent

Outline

- 1 Introduction
- 2 Accelerated Stochastic Subgradient Methods
- Applications and experiments
- 4 Conclusion

Piecewise linear convex optimization

$\theta = 1 \Longrightarrow \mathsf{ASSG}$ achieves $O(\log(1/\epsilon))$ iteration complexity Examples:

Robust Regression

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} |\mathbf{w}^{\top} \mathbf{x}_i - y_i|$$

Sparse Classification:

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i) + \lambda ||\mathbf{w}||_1$$

Piecewise quadratic convex optimization

$\theta=1/2\Longrightarrow {\sf ASSG}$ achieves $\widetilde{O}(1/\epsilon)$ iteration complexity Examples:

• Least-squares regression + ℓ_1 regularizer

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - y_i)^2 + \lambda ||\mathbf{w}||_1$$

• Squared hinge loss + ℓ_1 regularizer:

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)^2 + \lambda ||\mathbf{w}||_1$$

 $\bullet \text{ Hurbe loss: } \ell(\mathbf{w}^{\top}\mathbf{x}_i, y_i) = \left\{ \begin{array}{ll} \frac{1}{2}(\mathbf{w}^{\top}\mathbf{x}_i - y_i)^2 & \text{for} \quad |\mathbf{w}^{\top}\mathbf{x} - y_i| \leq \gamma \\ \gamma(|\mathbf{w}^{\top}\mathbf{x}_i - y_i| - \frac{1}{2}\gamma) & \text{for} \quad |\mathbf{w}^{\top}\mathbf{x}_i - y_i| > \gamma \end{array} \right.$

Structured composite non-smooth problems

$$F(\mathbf{w}) = h(A\mathbf{w}) + R(\mathbf{w})$$

- $h(\cdot)$ is strongly convex (no smoothness assumption is required)
- R(w) is polyhedral
- $\theta = 1/2 \Longrightarrow ASSG$ achieves $O(1/\epsilon)$ iteration complexity

Examples:

• Robust Regression + ℓ_1 regularizer

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} |\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i}|^{p} + \lambda ||\mathbf{w}||_{1}, p \in (1, 2)$$

Problems with intermediate θ

 ℓ_p norm regression with ℓ_1 constraint

$$\min_{\|\mathbf{w}\|_1 \le B} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - y_i)^{2p}, p \in \mathbb{N}^+$$

where $\theta = 1/(2p)$

Experiments: SSG vs. ASSG

huber loss + ℓ_1 norm, million songs - ASSG $(t=10^6)$ ASSG $(t=10^6)$ - ASSG $(t=10^6)$ ASSG $(t=10^6)$ - ASSG $(t=10^$

Classification

Regression

Experiments: ASSG vs Other Baselines

Outline

- 1 Introduction
- 2 Accelerated Stochastic Subgradient Methods
- 3 Applications and experiments
- Conclusion

Conclusion

 Present our recent improved work ASSG with a lower iteration complexity for solving non-smooth optimization problems.

Method	Time complexity	Problem
SSG	$O\left(\frac{d}{\epsilon^2}\right)$	Stochastic structure
ASSG	$\widetilde{O}\left(\frac{d}{\epsilon^{2(1- heta)}}\right)$	Stochastic structure + LEB

- Study examples satisfying LEB in machine learning.
- RASSG for $\theta = 1$?
- Nonconvex problems?

Thank You! Questions?

Reference

- Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM J. Img. Sci.*, 2:183–202, 2009.
- Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. In *Proceedings of the 24th Annual Conference on Learning Theory (COLT)*, pages 421–436, 2011.
- Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM Journal on Optimization*, 19:1574–1609, 2009.
- Yurii Nesterov. *Introductory lectures on convex optimization : a basic course*. Applied optimization. Kluwer Academic Publ., 2004. ISBN 1-4020-7553-7.
- Yi Xu, Qihang Lin, and Tianbao Yang. Stochastic convex optimization: Faster local growth implies faster global convergence. In *Proceedings of the 34th International Conference on Machine Learning (ICML)*, pages 3821–3830, 2017.