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Example in machine learning

500

Table: house price 450
400
house | size (sqf) | price ($1k) w0 L
1 68 500 g . :
o ° 3
2 220 800 200 o L .
150 . °
P - - 100 . ° ..
19 359 1500 50
20 266 820 90 e00 800 . (180?§e)1200 1400 1600
Linear model:
y=fw) = xw,

where y = price, x = size.
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Introduction

. i7f‘1‘i)).
o {lv— f)?
g ()

400 600 800 1 0_00 1200 1400 1600
X (size)

1 = xiwl + [y2 = xawl? + ... [y20 — xa0w]?
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Introduction

Least squares regression:

: 1 ¢ m
min F(w) = — Z (yi — x;w)?
weR n = ————— .

=1 square loss

Least absolute deviations:

: N :
min Fw) = — > |y v

=1 absolute loss 0

High dimensional model:
, 1< . 1
min F(w) = — " lyi = x] wl + Alwlli = ~IIXw = yll; + Alwll;
weRd n & n —_——
i=1 regularizer
@ absolute loss is more robust to outliers problem
@ {1 norm regularization is used for feature selection
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Introduction

Machine learning problems:

min F(w)
weR4

1 n
- Z w; x;,y))+  1r(w)
n e ~——

=1 |oss function  regularizer

@ Classification:

o hinge loss: £(w;x,y) = max(0, 1 — yx"w)
@ Regression:

o absolute loss: £(w;x,y) = [x"w — y|

e square loss: {(W;X,y) = (XTW — y)?
@ Regularizer:

e £y norm: r(w) = A||w||;

e ¢Z norm: r(w) = 2|lwlj3
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Convex optimization problem

@ Problem:
min F(w)
weR4
e F(w):R? — Ris convex

e optimal value: F(w.) = mingere F(W)
e optimal solution: w,

@ Goal: to find a solution w e

F(W) - F(w,) < €

e 0<ex,(eg. 1077)
e e-optimal solution: w
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Introduction

Complexity measure

@ Most optimization algorithms are
iterative

Wil = W, + Vw;

02

@ Iteration complexity: number of
iterations T'(¢) that

Objective

F(WT) - F(W*) <e€

T

where 0 < e <« 1.
@ Time complexity: T(e) x C(n,d)
o C(n,d): Per-iteration cost

o 300 w00
Iterations
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Gradient Descent (GD)

@ Problem: min,,cg F(w)

@ wyy = arg min,eg F(wy) +
L
(VE(wp), w = wi) + Sllw = wll3

@ GD:initialwg e R, fort=0,1,...
Wie1 = wy = nVF(wy)

e n=1>0: step size.
@ simple & easy to implement

Theorem ([Nesterov, 2004])

After T = O (1), F(wr) - F(w.) <
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Gradient Descen D

smooth
@ Problem: min,,er I;(w)

@ Wy = arg min,egr F(w,) +
(VEwe), w = we) + £llw — will3
@ GD:initialwg e R, fort=0,1,...

W1 = wp = nVF(wy)

e n=1>0: step size.
@ simple & easy to implement

Theorem ([Nesterov, 2004])

After T = O (1), F(wr) - F(w.) <
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Introduction

Gradient Descent (GN)
| F(w) < F(wp) + (VE(w,), w = we) + Slw = will3 }

@ Problem: minweR%

@ Wy = arg min,egr F(w,) +
(VEwe), w = we) + £llw — will3
@ GD:initialwg e R, fort=0,1,...

W1 = wp = nVF(wy)

e n=1>0: step size.

@ simple & easy to implement

Theorem ([Nesterov, 2004])
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Accelerated Gradient Descent (AGD)

@ Nesterov’s momentum trick
@ AGD: initial wo, vi = wg, fort=1,2,...:

W, =V, —nVF(v,)

Viel = W + Bi(W, — W)

Momentum Step

@ B, € (0,1) is momentum parameter.

Gradient Step

@ Nesterov’s Accelerated Gradient

Theorem ([Beck and Teboulle, 2009])

Letn= 1,8 = %=L € (0,1) with 6,1 = SV and g, = 1, then after
7= 0( ) F(wr) — F(w,) < €
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SubGradient (SG) descent

@ Problem: min,,cg F(w)
@ SG: initial wy, forr=0,1,...

Wii1 = wp — ndF(w;)

@ decrease n every iteration.

Theorem ([Nesterov, 2004])

After T = O (%), F(wr) = F(w.) < €
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SubGradient (SG) descent

@ Problem: min,,cg F(w)
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Summary of time complexity

weRd

. BN
min F(w) = - Zfi(W; X, Vi)
i=1

Method | Time complexity | Smooth
GD 0(%) YES
nd
AGD 0 (7) YES
SG 0(4) NO

GD: Gradient Descent
AGD: Accelerated Gradient Descent
SG: SubGradient descent
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Challenge of deterministic methods

Computing gradient is expensive

mmF(W) Zf(W Xj, Vi)

1 n
VF(w) := - Z Vii(w; Xi, yi)
i=1

@ When n/d is large: Big Data

@ To compute the gradient, need to pass through all data points.

@ At each updating step, need this expensive computation.
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Stochastic Gradient Descent (SGD)

@ SGD: initial wo, fort =0, 1,. .. minF(w) := Eg_p[f(w; £)]
weRd ’

sample one data & = (x;,y;)
Wil = W, —nVf(wi &) T I

stchrﬁdjent Descent

@ decrease 7 every iteration LT
@ simple & memory efficient [ '
@ problem: variance of stochastic ‘ N ara d;eht Boscent
gradient, slow convergence N

Theorem ([Nemirovski et al., 2009])
After T = 0 (“25/2), F(wr) — F(w.) < € with a probability 1 - &.

VALSE Webinar Presentation April 18,2018



Stochastic SubGradient (SSG) descent

@ Problem:

vrvré]i@ F(w) = Eeoplf(w; £)]

@ SSG: initial wy, fort=0,1,...

sample one data &,
Wil = W —n0f (W3 &)

@ decrease n every iteration

Theorem ([Hazan and Kale, 2011])

Atter T = O (“£5120), F(wr) - F(w.) < € with a probability 1 - 6.
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______ntroduction |
Summary of time complexity

weRd

. 1<
min F(w) = - Zfi(W; Xi, i)
i=1

Method | Time complexity | Smooth
SGD 0(£) YES
SSG 0(%) NO

SGD: Stochastic Gradient Descent
SSG: Stochastic SubGradient descent

@ SGD can not enjoy the smoothness property to obtain faster rate.
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How can we do better?

@ Assume Strong Global Assumptions (e.g., strong convexity,
smoothness): smaller family of problems

@ Strongly convex problems
A
F(x) > F(y) + 0F(y)"(x - y) + Flx = vl

@ 1> 0: strong convexity parameter.
@ SSG with 7, = 1/(lr) enjoys O(ﬁ) iteration complexity.

Strong convexity is sometimes too good to be true
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Non-smooth and non-strongly problems in ML

Robust Regression:

1 n
min — Z w'x; — yil?, pell,?2)
W

Sparse Classification:
.1 -

min — Z max(0, 1 — y;w' x;) + A||wl|;
W n —

i=1
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The contributions of our paper

Y. Xu, Q. Lin, and T. Yang. Stochastic convex optimization: Faster local
growth implies faster global convergence. In ICML, pages 3821-3830, 2017.

@ A New Theory of Stochastic Convex Optimization
o A Broader Family of Conditions: Local Error Bound Condition
o Faster Global Convergence under Local Error Bound Condition

o Applications in Machine Learning
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Local error bound (LEB) condition

If there exists a constant ¢ > 0 and a local growth rate 6 € (0, 1] such that:

W = willo < c(F(w) — Fw,))!, YweS,, (1)

then we say F(w) satisfies a local error bound condition (also know as
local growth condition).

—Ix|, 6=1
—x|"® o=
® Sc={weR’: F(w) - F. <€) " o
—|x|%, 6=0.
e-sublevel set. _ooe ~
@ A local sharpness measure of “oos ~
the function 0_02\ /
—8.1 -0.05 0 0.05 0.1
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Accelerated Stochastic Subgradient Methods

Sketch of accelerated algorithm

S’
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Accelerated Stochastic SubGradient (ASSG) method

: Setn, Kandt
fork=1,...,Kdo

Wi = SSG(Wi—1, Mk, Di» 1)
Mik+1 = Mi/2, Die1 = Dy /2
: end for

SSG(wy,n,D,t): fort=1,...,¢

Wril = Proj||w—w1||25D[W‘r — N0fr(Wr, Z7)]

Output: W = !, w/t

Theorem [Xu et al., 2017]

After T = O(t log(é)) iterations with 7 > % F(wg) — F. <2ewitha
probability 1 — 6.
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Accelerated Stochastic Subgradient Methods

Practical Variant: ASSG with Restarting (RASSG)

2.2 . . .
Setting 1 > logg{# requires c, which is usually unknown

A Practical Variant:

1: Input: Dgl), 1, w9 and n; = €/(3G?)
2. fors=1,2,...,5do

3 Letw® =ASSG(w¢V, K, 1, D\")

4 Letty, =1,220-9) D(ls+1) _ D(IS)ZI’H
5: end for
* ]
*]
"]

another level of restarting
increasing ¢ by a factor of 2219
iteration complexity remains the same
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Summary of time complexity

min F(w) = Ec.p[f(W; £)]

weR

Table: Time complexities for non-smooth stochastic optimization methods!

Method | Time complexity Condition
SSG o) (;%) Stochastic structure
ASSG 0(=) Stochastic structure and LEB

SSG: Stochastic SubGradient descent
ASSG: Accelerated Stochastic SubGradient descent

19 €(0,1]
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Piecewise linear convex optimization

0 = 1 = ASSG achieves O(log(1/¢)) iteration complexity
Examples:

@ Robust Regression
1 n
. - T L .
min -~ ;:1 W' x; — yil
@ Sparse Classification:

1 n
min — Z max(0, 1 — y;w'x;) + A||w||;
v
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Piecewise quadratic convex optimization

6 = 1/2 = ASSG achieves 5(]/6) iteration complexity
Examples:

@ Least-squares regression + ¢ regularizer
1Y T 2
min — " (Wx; = y)? + Alwll
w n
i=1
@ Squared hinge loss + ¢; regularizer:
1 o Te.\2
min — Z max(0, 1 —y;w' x;)” + A||w||;
w n
i=1

TwTx; —y)? for [wix—yl<y

@ Hurbe loss: ((w'x;,y;) =
(%07 { y(wx; = yil = %’y) for [w'x; —y| >y
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Structured composite non-smooth problems

F(w) = h(Aw) + R(w)

@ h(-) is strongly convex (no smoothness assumption is required)

@ R(w) is polyhedral

@ 0 =1/2 = ASSG achieves O(1/e) iteration complexity
Examples:

@ Robust Regression + ¢; regularizer

1
min = 3" WTx; =y + Aiwlh,p € (1,2)
Vo
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Problems with intermediate 6

¢, norm regression with £; constraint

Z(w xi = y)?,p e N*

||W||1<B n

where 6 = 1/(2p)
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Experiments: SSG vs. ASSG

hinge loss + ¢; norm, covtype huber loss + ¢; norm, million songs
-3 -3
2 as —+=3SG a5 ——SSG
S \N—ASSG(t:IO“) S —ASSC(t=10°)
g 45 --RASSG(tI:IO”)_“‘ g 45 --RASSG(tI:IO”)
2 5 s s \*r
& 55 S
] ] 55
L7 .0
o) o)
O 65 o ¢
R S 65
.75 & 7
— 8 — .75
0 2 4 . 6 . 8 170 0 2 4 . 6 . 8 170
number of iterations *1° number of iterations *1°
Classification Regression

VALSE Webin i April 18,2018




Applications and experiments

Experiments: ASSG vs Other Baselines

squared hinge 4+ ¢; norm, url huber loss 4+ ¢; norm, E2006-loglp
0.22 —rel 0.16 —rel
0.2 —SAGA .14} —SAGA
0.18 = -SVRG++ 012 - -SVRG++
o oo
2 e - -RASSG L - -RASSG
€ €
gom 3
o o42p =
o \J e}
0.1 |\ o
008[\ T ~= e ___
) —————
0 05 1 15 2
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Conclusion

@ Present our recent improved work ASSG with a lower iteration
complexity for solving non-smooth optimization problems.

Method | Time complexity Problem
SSG o (E%) Stochastic structure
ASSG 0(=) Stochastic structure + LEB

@ Study examples satisfying LEB in machine learning.
@ RASSG for6 =17
@ Nonconvex problems?
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Thank You! Questions?
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