Pseudo-supervised (Deep) Learning for Image Search

Wengang Zhou (周文罡)

EEIS Department, University of Science & Technology of China

zhwg@ustc.edu.cn

Motivation

Our Work

□Conclusion

Motivation

Our Work

□Conclusion

Deep learning has been widely and successfully applied in many vision tasks

- Classification, detection, segmentation, etc.
- Popular models: AlexNet, VGGNet, ResNet, DenseNets
- □ What is learnt with deep learning?
 - **Feature representation** to characterize and discriminate visual content
- □ What make the success of deep learning?
 - Novel techniques in model design
 - ✓ Dropout, batch normalization, ReLU, etc.
 - Powerful computing capability
 - Big training data
- Pre-request of deep learning
 - Sufficient training data with label as supervision
 - Such as image class, object bounding box, pixel category, etc.

Content-based Image search

- Problem definition
 - ✓ Given a query image, identify those similar ones from a large corpus
- Key issues
 - ✓ Image representation
 - > How to represent the visual content to **measure image relevance**?
 - Invariant to various transformations, including rotation, scaling, illumination change, background clutter, etc.
 - ✓ Image database index
 - > How to enable the fast query response with a large image dataset?
 - Characteristic
 - ✓ Large database, real-time query response
 - Unknown number of image category
 - ✓ Infeasible to numerate the potential categories
 - ✓ Data without label: difficult to train a deep learning model

Motivation

Our Work

□Conclusion

Motivation

□ How to leverage deep learning to image search?

- Apply the pre-trained CNN model from image classification task
 - \checkmark Fail to directly optimize towards the goal of image search
 - ✓ Achieve sub-optimal performance in search problem
- □ Key problem
 - How to make up the **virtual** label to supervise the learning with deep CNN model?

Our solutions

- Generate supervision with retrieval-oriented context
 - ✓ Refine the deep learning feature of a pre-trained CNN model
 - ✓ Fine-tune a pre-trained CNN model
- Leverage the outputs of existing methods as supervision
 - ✓ Binary hashing for ANN search

Motivation

Our Work

□Conclusion

Our Work

- Generate supervision with retrieval-oriented context
 - Refine the deep learning feature of a pre-trained CNN model

Collaborative index embedding

Fine-tune a pre-trained CNN model

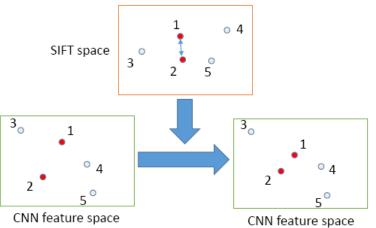
✓ Deep Feature Learning with Complementary Supervision

□ Leverage the outputs of existing methods as supervision

- Learn better binary hash functions for ANN search
 - Pseudo-supervised Binary Hashing with linear distance preserving constraints

Our Work

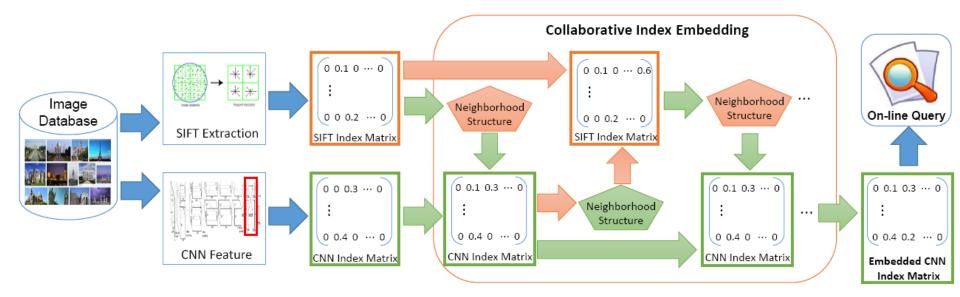
Generate supervision with retrieval-oriented context

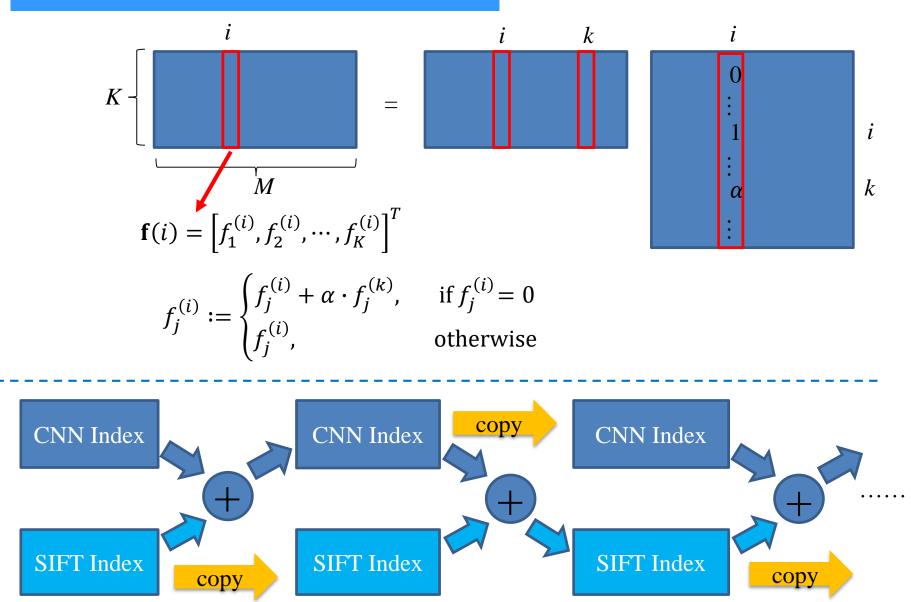

- Refine the deep learning feature of a pre-trained CNN model
 - Collaborative index embedding
- Fine-tune a pre-trained CNN model
 - ✓ Deep Feature Learning with Complementary
- Leverage the outputs of existing methods for refinement
 - Learn better binary hash functions for ANN search
 - Pseudo-supervised Binary Hashing with linear distance preserving constraints

Collaborative Index Embedding

Motivation

- Images are represented with different features, such as SIFT and CNN
- How to explore the complementary clue among different features
- □ Basic idea: neighborhood embedding
 - Ultimate goal: make the nearest neighborhood structure consistent across different feature space
 - If image 1 and 2 are nearest neighbors of each other in SIF space, pull them to be closer in CNN feature space
 - Do similar operation in SIFT feature

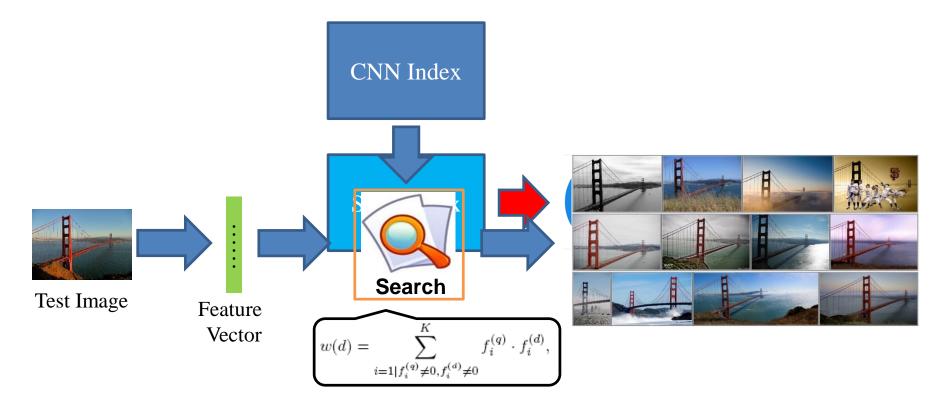

Collaborative Index Embedding


Optimization formulation

$$\mathbf{C}(\tilde{\mathbf{M}}_{C}, \tilde{\mathbf{M}}_{S}) = -\sum_{u \in \mathbf{P}} \frac{\#(\mathcal{R}_{C}(u) \cap \mathcal{R}_{S}(u))}{\#(\mathcal{R}_{C}(u) \cup \mathcal{R}_{S}(u))} + \mu * ||\mathbf{\Phi}_{C}||_{F} + \lambda * ||\mathbf{\Phi}_{S}||_{F},$$

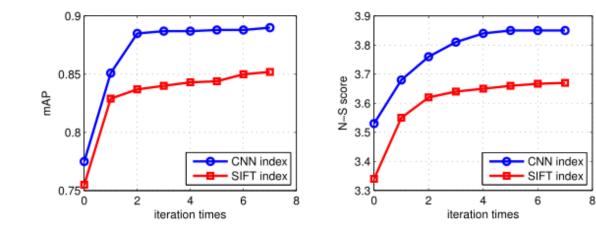
□ Implementation framework

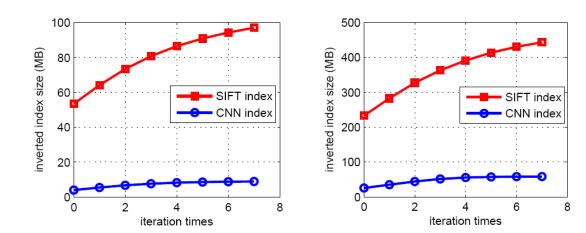
Interpretation of Index Embedding



Online Query

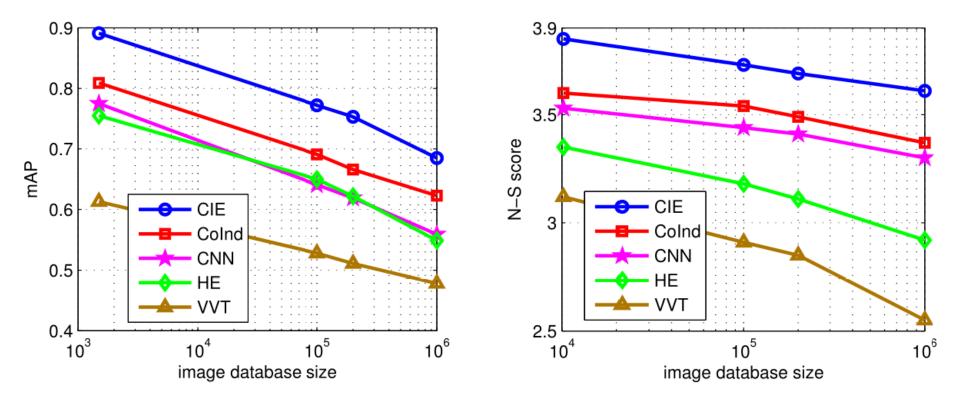
□ Key only the index of CNN feature


Smaller storage, better retrieval accuracy


Experiments

□ Retrieval accuracy in each iteration

□ Index size in each iteration



Comparison with existing retrieval algorithms

Methods	UKbench (N-S score)	Holidays (mAP)	Involved visual features	On-line memory cost per indexed image (Bytes)
CWVT[18]	3.56	0.781	SIFT	16K
SCSM[40]	3.52	0.762	SIFT	18K
HE+WGC[13]	3.42	0.813	SIFT	24K
CDM[10]	3.68	NA	SIFT	16K
KrNN[11]	3.67	NA	SIFT	22K
QSF[44]	3.77	0.846	SIFT, HSV	20K
CoInd[21]	3.60	0.809	SIFT, attributes	24K
c-MI[22]	3.85	0.858	SIFT, color names	13.5K
MsOP[34]	NA	0.802	dense CNN	48K
QaLF[46]	3.84	0.880	SIFT, holistic CNN, HSV, GIST	62K
CIE	3.86	0.892	SIFT, holistic CNN	4K
CIE+	3.91	0.903	SIFT, holistic CNN	52K

Evaluation on different database scales

Our Work

Generate supervision with retrieval-oriented context

- Refine the deep learning feature of a pre-trained CNN model
 - ✓ Collaborative index embedding (TPAMI 2017)
- Fine-tune a pre-trained CNN model
 - Deep Feature Learning with Complementary Supervision (TIP, under review)

Leverage the outputs of existing methods for refinement

- Learn better binary hash functions for ANN search
 - Pseudo-supervised Binary Hashing with linear distance preserving constraints (TIP-2017, MM-2016)

Deep Feature Learning with Complementary Supervision Mining

Motivation

- Database images are not independent of each other
- Makes use of the complementary clues from different visual features as supervision to guide the learning with deep CNN
- Complementary Supervision Mining
 - Makes use of the relevance dependence among database images
 - Reversible nearest neighbourhood

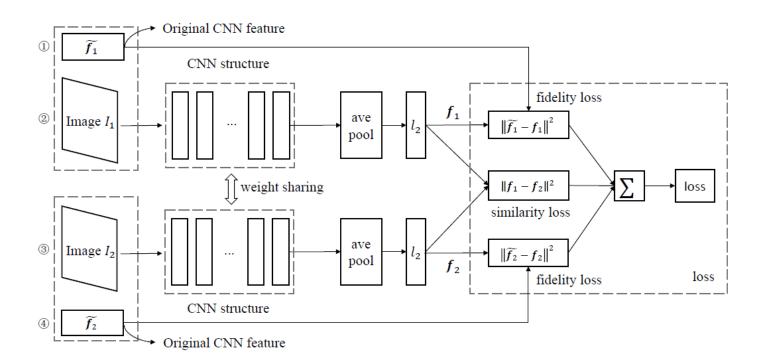
 $R_C(I_i) = \{I_j | I_j \in \mathcal{N}_C(I_i, p), I_i \in \mathcal{N}_C(I_j, m)\}$

 $R_S(I_i) = \{I_j | I_j \in \mathcal{N}_S(I_i, q), I_i \in \mathcal{N}_S(I_j, m)\},\$

How to use it?

✓ Select similar image pairs by SIFT matching to compose a training set

Deep Feature Learning with Complementary Supervision Mining



Optimization formulation

Loss definition

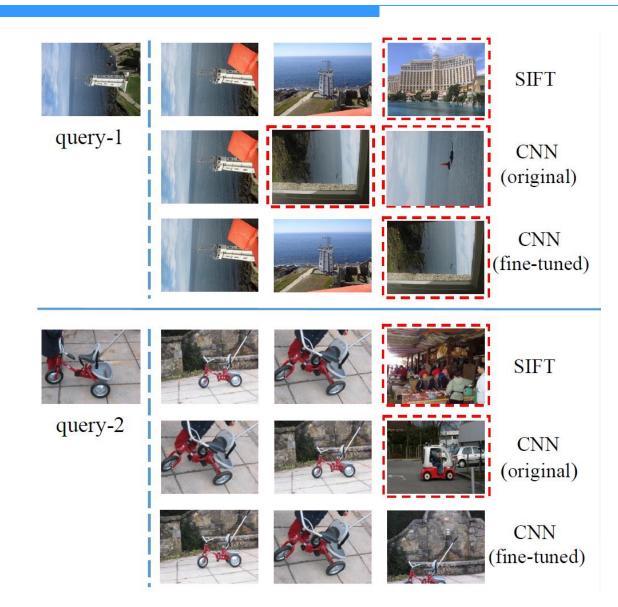
$$\mathcal{L}(I_1, I_2) = \alpha \| f_1 - f_2 \|^2 + \| f_1 - \tilde{f}_1 \|^2 + \| f_2 - \tilde{f}_2 \|^2,$$


 f_1 : CNN feature of I_1 after fine-tuning \tilde{f}_1 : CNN feature of I_1 before fine-tuning

Experiments

Study of complement on image nearest neighbors with SIFT or CNN

Comparison of different features


Method	Holidays	UKBench
SIFT	0.735	3.33
CNN (AlexNet)	0.801	3.63
Ours (AlexNet)	0.878	3.88
CNN (VGG-Net16)	0.793	3.67
Ours (VGG-Net16)	0.880	3.90

Comparison of different query settings

Method	Holidays	UKBench
CNN (pre-trained)	0.801	3.62
CNN (without query)	0.821	3.86
CNN (with query)	0.878	3.88

Qualitative Results

Experiments

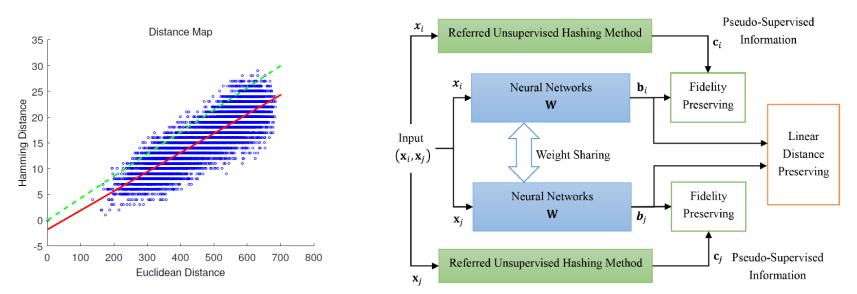
Comparison with multi-leature fusion retrieval methods						
Method	Holidays	UKBench	MEM (Bytes)			
QaLF [33]	0.880	3.84	16K			
OR [32]	0.837	3.81	16K			
Zheng <i>et al.</i> [28]	0.862	3.78	62K			
CIE [31]	0.892	3.86	4K			
Ours (VGG-Net16)	0.880	3.90	2K			

Comparison with multi-feature fusion retrieval methods

Comparison with deep feature based retrieval methods

Method	Network	Dim	Holidays	UKBench
SPoC [5]	V	256	0.802	3.65
NetVlad [27]	V	256	0.86	-
CroW [10]	V	512	0.849	-
Neural codes [18]	FA	128	0.789	3.55
R-MAC [19]	FA	256	0.815	-
Ours	FA	256	0.878	3.88
NetVlad [27]	FV	256	0.843	-
R-MAC [19]	\mathbf{FV}	512	0.825	-
Gordo et al. [20]	FV	512	0.864	3.55
Ours	FV	512	0.880	3.90

Our Work



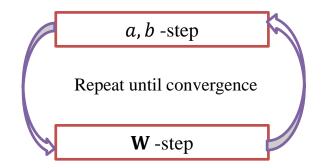
- Generate supervision with retrieval-oriented context
 - Refine the deep learning feature of a pre-trained CNN model
 - Collaborative index embedding
 - Fine-tune a pre-trained CNN model
 - ✓ Deep Feature Learning with Complementary Supervision
- Leverage the outputs of existing methods for refinement
 - Learn better binary hash functions for ANN search
 - Pseudo-supervised Binary Hashing with linear distance preserving constraints

Pseudo-supervised Binary Hashing

- Binary hashing
 - Transform data from Euclidean space to Hamming space
 - Speedup the approximate nearest neighbor search
 - **Problem:** the optimal output of binary hashing is unknown
- Our solution
 - Take an existing method as Reference and take its output as supervision
 - Impose novel transformation constraints: linear distance preserving
 - Learn a better hashing transformation with neural network

Alternative scheme

Optimization objective:


$$\min_{\mathbf{W},a,b} \frac{\lambda}{N_p} \|\mathbf{h} - a\mathbf{d} - b\|_2^2 + \frac{\alpha}{N_p} \|\widetilde{\mathbf{U}} - \widetilde{\mathbf{C}}\|_F^2 + \beta \|\mathbf{W}^T \mathbf{W} - \mathbf{I}\|_F^2$$

An alternative solution:

a, *b*-step:
$$\min_{a,b} \|\mathbf{h} - a\mathbf{d} - b\|_2^2$$

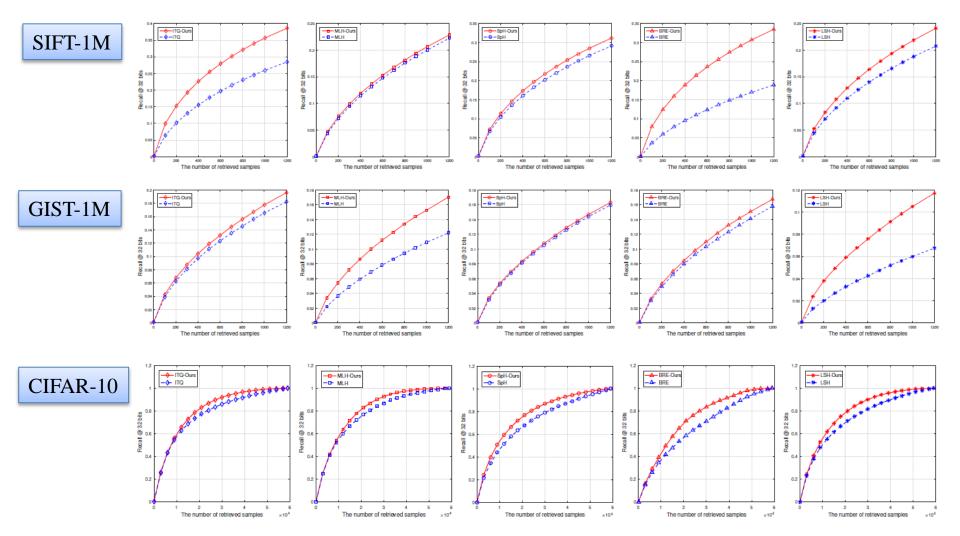
✓ Linear Regression Problem: Least Square Method

■ W -step: $\min_{\mathbf{W}} \frac{\lambda}{N_p} \|\mathbf{h} - a\mathbf{d} - b\|_2^2 + \frac{\alpha}{N_p} \|\mathbf{\widetilde{U}} - \mathbf{\widetilde{C}}\|_F^2 + \beta \|\mathbf{W}^T\mathbf{W} - \mathbf{I}\|_F^2$ ✓ Dual Neural Networks: Stochastic Gradient Descent

Experimental Results

Precision(%)@500 Comparison

Dataset	Code		Approaches							
Dataset	Length	LSH[15]/LSH-Ours	SH[15]/LSH-Ours BRE[28]/BRE-Ours MLH[21]/MLH-Ours SpH[20]/SpH-Ours ITQ[18]/ITQ-Ours 0.94 / 1.12 0.83 / 1.69 0.71 / 0.84 1.38 / 1.51 1.32 / 2.30 2.52 / 2.95 2.20 / 4.27 2.63 / 2.73 3.65 / 3.93 3.54 / 5.09 5.23 / 6.20 4.45 / 7.15 5.84 / 6.39 7.06 / 7.51 7.03 / 7.71 9.30 / 10.21 7.70 / 8.62 8.64 / 9.12 10.63 / 11.42 10.82 / 10.78 0.32 / 0.69 0.86 / 0.99 0.65 / 0.92 0.76 / 0.91 1.09 / 1.24 0.76 / 1.35 1.85 / 1.95 1.38 / 2.00 1.87 / 1.91 2.22 / 2.37 1.61 / 2.79 3.06 / 3.05 2.74 / 3.75 3.51 / 3.55 3.37 / 3.55 3.25 / 4.63 4.62 / 4.76 4.07 / 5.36 5.39 / 5.49 4.40 / 5.46 51.33 / 52.18 28.96 / 26.53 48.36 / 53.01 54.76 / 52.85 49.68 / 53.37 57.38 / 62.16 35.30 / 36.05 56.73 / 61.38 59.99 / 60.59 56.35 / 61.38 64.05 / 68.70 45.11 / 48.94 62.11 / 67.26 66.14 / 64.14 60.77 / 64.58	ITQ[18]/ITQ-Ours	LDTH					
	16	0.94 / 1.12	0.83 / 1.69	0.71 / 0.84	1.38 / 1.51	1.32 / 2.30	1.66			
ANN SITTIM	32	2.52 / 2.95	2.20 / 4.27	2.63 / 2.73	3.65 / 3.93	3.54 / 5.09	4.12			
AININ_SIFTIM	64	5.23 / 6.20	4.45 / 7.15	5.84 / 6.39	7.06 / 7.51	7.03 / 7.71	7.46			
	Image: NN_SIFT1M Image: Note of the state o	10.82 / <u>10.78</u>	11.22							
	16	0.32 / 0.69	0.86 / 0.99	0.65 / 0.92	0.76 / 0.91	1.09 / 1.24	1.23			
ANN CIST1M	32	0.76 / 1.35	1.85 / 1.95	1.38 / 2.00	1.87 / 1.91	2.22 / 2.37	2.45			
ANN_01511M	64	1.61 / 2.79	3.06 / 3.05	2.74 / 3.75	3.51 / 3.55	3.37 / 3.55	3.74			
	128	3.25 / 4.63	4.62 / 4.76	4.07 / 5.36	5.39 / 5.49	4.40 / 5.46	5.18			
	16	51.33 / 52.18	28.96 / <u>26.53</u>	48.36 / 53.01	54.76 / <u>52.85</u>	49.68 / 53.37	51.86			
CIFAR-10	32	57.38 / 62.16	35.30 / 36.05	56.73 / 61.38	59.99 / 60.59	56.35 / 61.38	59.05			
(1000d fc8)	64	64.05 / 68.70	45.11 / 48.94	62.11 / 67.26	66.14 / <u>64.14</u>	60.77 / 64.58	65.57			
	128	69.04 / 71.88	49.47 / 57.85	65.35 / 70.91	69.20 / <u>66.93</u>	64.52 / 68.86	69.98			


mAP Comparison

Deteest	Code		Approaches								
Dataset ANN_SIFT1M ANN_GIST1M	Length	LSH[15]/LSH-Ours	BRE[28]/BRE-Ours	MLH[21]/MLH-Ours	SpH[20]/SpH-Ours	ITQ[18]/ITQ-Ours	LDTH				
	16	0.56 / 0.70	0.57 / 1.09	0.48 / 0.56	0.84 / 0.98	0.93 / 1.62	1.13				
ANN SIFTIM	32	2.12 / 2.55	1.75 / 4.18	2.17 / 2.33	3.37 / 3.75	3.31 / 5.52	4.07				
ANN_5IFTIM	64	6.29 / 7.92	4.71 / 9.73	6.88 / 7.92	9.47 / 10.38	9.34 / 11.29	10.53				
	128	15.71 / 18.26	11.11 / 13.11	12.94 / 14.19	19.42 / 21.74	19.91 / <u>19.68</u>	21.40				
	16	0.18 / 0.38	0.43 / 0.52	0.38 / 0.53	0.41 / 0.49	0.64 / 0.75	0.74				
ANNI CISTIM	32	0.56 / 1.11	1.26 / 1.40	0.92 / 1.46	1.34 / 1.44	1.77 / 1.96	2.03				
ANN_GISTIW	64	1.38 / 2.54	2.75 / 2.77	2.45 / 3.68	3.43 / 3.51	3.39 / 3.57	3.86				
	128	3.51 / 5.29	5.18 / 5.28	4.35 / 6.23	6.45 / 6.49	5.53 / 6.56	6.30				
	16	30.65 / 33.80	20.36 / 20.40	33.06 / 34.59	30.00 / 33.85	34.64 / 35.16	34.60				
CIFAR-10	32	34.79 / 38.62	22.20 / 25.68	38.04 / 40.03	31.69 / 37.07	39.40 / 41.08	39.42				
(1000d fc8)	64	38.84 / 43.93	26.52 / 32.35	41.94 / 44.88	36.82 / 37.59	43.21 / 43.85	43.64				
	128	43.56 / 46.74	28.03 / 36.53	44.80 / 47.86	39.80 / <u>38.09</u>	46.28 / 47.42	47.23				

Experimental Results

Recall@K Comparison on different feature datasets

□ mAP Comparison for the supervised binary hashing methods

CIFAR-10 IMAGE DATASET

Methods	Architectures	12-bits	24-bits	32-bits	48-bits
CNNH [33]	3 convs, 2 fcs	0.429	0.511	0.509	0.522
CNNH* [32]	Net. in Net.	0.484	0.476	0.472	0.489
NINH [32]	Net. in Net.	0.552	0.566	0.558	0.581
DHN [53]	AlexNet	0.555	0.594	0.603	0.621
DPSH [52]	CNN-F	0.713	0.727	0.744	0.757
LDSH	CNN-F	0.704	0.733	0.758	0.757

NUS-WIDE DATASET

Methods	Architectures	12-bits	24-bits	32-bits	48-bits
CNNH [33]	3 convs, 2 fcs	0.611	0.618	0.625	0.608
CNNH* [32]	Net. in Net.	0.617	0.663	0.657	0.688
NINH [32]	Net. in Net.	0.674	0.697	0.713	0.715
DHN [53]	AlexNet	0.708	0.735	0.748	0.758
LDSH	CNN-F	0.674	0.719	0.728	0.738

Reference

- Wengang Zhou, Houqiang Li, Jian Sun, and Qi Tian, "Collaborative Index Embedding for Image Retrieval," *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, Feb. 2017.
- Min Wang, Wengang Zhou, Qi Tian, and Houqiang Li, "A General Framework for Linear Distance Preserving Hashing," *IEEE Transactions on Image Processing (TIP)*, Aug. 2017.
- Min Wang, Wengang Zhou, Qi Tian, et al., "Linear Distance Preserving Pseudo-Supervised and Unsupervised Hashing," *ACM International Conference on Multimedia (MM)*, pp. 1257-1266, long paper, 1257-1266, 2016.

Motivation

Our Work

Conclusion

Conclusion

- Feature representation is the fundamental issue in image search
- □ Image search suffers a gap from image classification in labeled data to supervise deep learning
- Supervision clues can be designed to orient deep learning for search task
 - Refine the feature learning process
 - Generate better features for image search

