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Domain Adaptation

[1]https://cs.stanford.edu/~jhoffman/domainadapt/

Figure 1. Illustration of dataset bias.

Problem: Training 
(Source）

Test
(Target)

Training and test sets are related but 

under different distributions.

• Learn feature space that combine 

discriminativeness and domain invariance.

Methodology:

source error domain discrepancyminimize +

DA



Maximum Mean Discrepancy (MMD)

• An empirical estimate
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• representing distances between distributions as distances 
between mean embeddings of features



Motivation
• Class weight bias cross domains remains unsolved but ubiquitous
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①Changes in sample selection criteria

Effect of class weight bias should be removed: 
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Figure 2. Class prior distribution of three digit recognition datasets.
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①Changes in sample selection criteria

Effect of class weight bias should be removed: 

② Applications are not concerned 
with class prior distribution 
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①Changes in sample selection criteria

Effect of class weight bias should be removed: 

② Applications are not concerned 
with class prior distribution 

MMD can be minimized by either 
learning domain invariant representation 
or preserving the class weights in source 
domain.



Weighted MMD

Main idea: reweighting classes in source domain so that they have the 
same class weights as target domain
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• Introducing an auxiliary weight       for each class c in source domainc
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Main idea: reweighting classes in source domain so that they have the 
same class weights as target domain
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Weighted DAN

[4] Long M, Cao Y, Wang J. Learning Transferable Features with Deep Adaptation Networks[J]., 2015.

1. Replace MMD with weighted MMD item in DAN[4]:
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Weighted DAN

2. To further exploit the unlabeled data in target domain, empirical 
risk is considered as semi-supervised model in [5]:

[5] Amini, Massih-Reza, and Patrick Gallinari. "Semi-supervised logistic regression." Proceedings of the 
15th European Conference on Artificial Intelligence. IOS Press, 2002.

1. Replace MMD with Weighted MMD item in DAN[4]:
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[4] Long M, Cao Y, Wang J. Learning Transferable Features with Deep Adaptation Networks[J]., 2015.



Optimization: an extension of CEM[6] 

• E-step:

[7] Celeux, Gilles, and Gérard Govaert. "A classification EM algorithm for clustering and two stochastic 
versions." Computational statistics & Data analysis 14.3 (1992): 315-332.

Fixed W, estimating the class posterior probability                          of target samples:

Parameters to be estimated including three parts, i.e., 

The model is optimized by alternating between three steps :
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Optimization: an extension of CEM[6] 

• E-step:

[7] Celeux, Gilles, and Gérard Govaert. "A classification EM algorithm for clustering and two stochastic 
versions." Computational statistics & Data analysis 14.3 (1992): 315-332.

• C-step:

Fixed W, estimating the class posterior probability                          of target samples:

① Assign the pseudo labels             on target domain:
② update the auxiliary class-specific weights      for source domain:

Parameters to be estimated including three parts, i.e., 

The model is optimized by alternating between three steps :
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( )c x1 is an indictor function which equals 1 if x = c, and equals 0 otherwise.



Optimization: an extension of CEM[6] 

[7] Celeux, Gilles, and Gérard Govaert. "A classification EM algorithm for clustering and two stochastic 
versions." Computational statistics & Data analysis 14.3 (1992): 315-332.

• M-step:

Fixed              and     , updating W. The problem is reformulated as: 

Parameters to be estimated including three parts, i.e., 

The model is optimized by alternating between three steps :
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The gradient of the three items is computable and W can be optimized by using a 
mini-batch SGD. 



Experimental results 

• Comparison with state-of-the-arts

Table 1. Experimental results on office-10+Caltech-10



Experimental results 

• Empirical analysis

Figure  3. Performance of various model 
under different class weight bias.

Figure  4. Visualization of the learned features of DAN and weighted DAN.



Summary

• Introduce class-specific weight into MMD to reduce the effect of class 
weight  bias cross domains.

• Develop WDAN model and optimize it in an CEM framework.

• Weighted MMD can be applied to other scenarios where MMD is used 
for distribution distance  measurement, e.g., image generation



Thanks!

Paper & code are available

Paper: https://arxiv.org/abs/1705.00609

Code: https://github.com/yhldhit/WMMD-Caffe


