Mind the class weight bias: weighted maximum mean discrepancy for unsupervised domain adaptation Hongliang Yan¹, Yukang Ding¹, Peihua Li², Qilong Wang², Yong Xu³, Wangmeng Zuo^{1,*}

Hongliang Yan 2017/06/21

Domain Adaptation

Problem:

Training and test sets are related but under different distributions.

Methodology:

• Learn feature space that combine *discriminativeness* and *domain invariance*.

minimize *source error* + *domain discrepancy*

Maximum Mean Discrepancy (MMD)

 representing distances between distributions as distances between mean embeddings of features

$$MMD^{2}(s,t) = \sup_{\|\phi\|_{H} \le 1} \|E_{x^{s} \sim s}[\phi(x^{s})] - E_{x^{t} \sim t}[\phi(x^{t})]\|_{H}^{2}$$

• An empirical estimate

$$\text{MMD}^{2}(\text{D}_{s},\text{D}_{t}) = \left\|\frac{1}{M}\sum_{i=1}^{M}\phi(\mathbf{x}_{i}^{s}) - \frac{1}{N}\sum_{j=1}^{t}\phi(\mathbf{x}_{j}^{t})\right\|_{H}^{2}$$

• Class weight bias cross domains remains unsolved but ubiquitous

$$MMD^{2}(D_{s}, D_{t}) = \left\|\frac{1}{M}\sum_{i=1}^{M}\phi(x_{i}^{s}) - \frac{1}{N}\sum_{j=1}^{t}\phi(x_{j}^{t})\right\|_{H}^{2}$$

• Class weight bias cross domains remains unsolved but ubiquitous

$$MMD^{2}(D_{s}, D_{t}) = \left\| \frac{1}{M} \sum_{i=1}^{M} \phi(\mathbf{x}_{i}^{s}) - \frac{1}{N} \sum_{j=1}^{t} \phi(\mathbf{x}_{j}^{t}) \right\|_{H}^{2}$$
$$\left\| \sum_{c=1}^{C} w_{c}^{s} E_{c}(\phi(\mathbf{x}^{s})) - \sum_{c=1}^{C} w_{c}^{t} E_{c}(\phi(\mathbf{x}^{t})) \right\|_{H}^{2}$$

$$w_c^s = M_c / M$$
 and $w_c^t = N_c / N$

• Class weight bias cross domains remains unsolved but ubiquitous

$$MMD^{2}(D_{s}, D_{t}) = \left\|\frac{1}{M}\sum_{i=1}^{M}\phi(\mathbf{x}_{i}^{s}) - \frac{1}{N}\sum_{j=1}^{t}\phi(\mathbf{x}_{j}^{t})\right\|_{H}^{2}$$

$$\left\|\sum_{c=1}^{C}w_{c}^{s}E_{c}(\phi(\mathbf{x}^{s})) - \sum_{c=1}^{C}w_{c}^{t}E_{c}(\phi(\mathbf{x}^{t}))\right\|_{H}^{2}$$

Effect of class weight bias should be removed:

1 Changes in sample selection criteria

$$w_c^s = M_c / M$$
 and $w_c^t = N_c / N$

• Class weight bias cross domains remains unsolved but ubiquitous

 $MMD^{2}(D_{s}, D_{t}) = \left\|\frac{1}{M}\sum_{i=1}^{M}\phi(x_{i}^{s}) - \frac{1}{N}\sum_{i=1}^{t}\phi(x_{j}^{t})\right\|_{H}^{2}$ $\left\|\sum_{c}^{C} w_{c}^{s} E_{c}(\phi(\mathbf{x}^{s})) - \sum_{c}^{C} w_{c}^{t} E_{c}(\phi(\mathbf{x}^{t}))\right\|$ $w_c^s = M_c / M$ and $w_c^t = N_c / N$ weight weight

Effect of class weight bias should be removed:

1 Changes in sample selection criteria

Figure 2. Class prior distribution of three digit recognition datasets.

• Class weight bias cross domains remains unsolved but ubiquitous

$$MMD^{2}(D_{s}, D_{t}) = \left\|\frac{1}{M}\sum_{i=1}^{M}\phi(\mathbf{x}_{i}^{s}) - \frac{1}{N}\sum_{j=1}^{t}\phi(\mathbf{x}_{j}^{t})\right\|_{H}^{2}$$

$$\left\|\sum_{c=1}^{C}w_{c}^{s}E_{c}(\phi(\mathbf{x}^{s})) - \sum_{c=1}^{C}w_{c}^{t}E_{c}(\phi(\mathbf{x}^{t}))\right\|_{H}^{2}$$

 $w_c^s = M_c / M$ and $w_c^t = N_c / N$

Effect of class weight bias should be removed:

1 Changes in sample selection criteria

2 Applications are not concerned with class prior distribution

• Class weight bias cross domains remains unsolved but ubiquitous

$$MMD^{2}(D_{s}, D_{t}) = \left\|\frac{1}{M}\sum_{i=1}^{M}\phi(x_{i}^{s}) - \frac{1}{N}\sum_{j=1}^{t}\phi(x_{j}^{t})\right\|_{H}^{2}$$

$$\left\|\sum_{c=1}^{C}w_{c}^{s}E_{c}(\phi(x^{s})) - \sum_{c=1}^{C}w_{c}^{t}E_{c}(\phi(x^{t}))\right\|_{H}^{2}$$

$$w_c^s = M_c / M$$
 and $w_c^t = N_c / N$

Effect of class weight bias should be removed:

1 Changes in sample selection criteria

2 Applications are not concerned with class prior distribution

> MMD can be minimized by either learning domain invariant representation or preserving the class weights in source domain.

Weighted MMD

Main idea: reweighting classes in source domain so that they have the same class weights as target domain

• Introducing an auxiliary weight α_c for each class c in source domain

$$MMD^{2}(D_{s}, D_{t}) = \left\| \frac{1}{M} \sum_{i=1}^{M} \phi(\mathbf{x}_{i}^{s}) - \frac{1}{N} \sum_{j=1}^{t} \phi(\mathbf{x}_{j}^{t}) \right\|_{H}^{2}$$

$$(1) \sum_{c=1}^{C} w_{c}^{s} E_{c}(\phi(\mathbf{x}^{s})) - \sum_{c=1}^{C} w_{c}^{t} E_{c}(\phi(\mathbf{x}^{t})) \|_{H}^{2}$$

Weighted MMD

Main idea: reweighting classes in source domain so that they have the same class weights as target domain

• Introducing an auxiliary weight α_c for each class c in source domain

$$MMD^{2}(D_{s}, D_{t}) = \left\|\frac{1}{M}\sum_{i=1}^{M}\phi(x_{i}^{s}) - \frac{1}{N}\sum_{j=1}^{t}\phi(x_{j}^{t})\right\|_{H}^{2}$$

$$MMD_{w}^{2}(D_{s}, D_{t}) = \left\|\frac{1}{M}\sum_{i=1}^{M}\alpha_{y_{i}^{s}}\phi(x_{i}^{s}) - \frac{1}{N}\sum_{j=1}^{t}\phi(x_{j}^{t})\right\|_{H}^{2}$$

$$\left\|\sum_{c=1}^{C}w_{c}^{s}E_{c}(\phi(x^{s})) - \sum_{c=1}^{C}w_{c}^{t}E_{c}(\phi(x^{t}))\right\|_{H}^{2}$$

$$\left\|\sum_{c=1}^{C}w_{c}^{t}E_{c}(\phi(x^{s})) - \sum_{c=1}^{C}w_{c}^{t}E_{c}(\phi(x^{t}))\right\|_{H}^{2}$$

Weighted DAN

1. Replace MMD with weighted MMD item in DAN[4]:

$$\min_{\mathbf{W}} \frac{1}{M} \sum_{i=1}^{M} \ell(\mathbf{x}_{i}^{s}, \mathbf{y}_{i}^{s}; \mathbf{W}) + \lambda \sum_{l \in \{l_{1}, \dots, l_{L}\}} \mathbf{MMD}_{l}(\mathbf{D}_{s}^{l}, \mathbf{D}_{t}^{l})$$

[4] Long M, Cao Y, Wang J. Learning Transferable Features with Deep Adaptation Networks[J]., 2015.

Weighted DAN

1. Replace MMD with weighted MMD item in DAN[4]:

[4] Long M, Cao Y, Wang J. Learning Transferable Features with Deep Adaptation Networks[J]., 2015.

Weighted DAN

1. Replace MMD with Weighted MMD item in DAN[4]:

$$\min_{\mathbf{W}} \frac{1}{M} \sum_{i=1}^{M} \ell(\mathbf{x}_{i}^{s}, y_{i}^{s}; \mathbf{W}) + \lambda \sum_{l \in \{l_{1}, \dots, l_{L}\}} \mathbf{MMD}_{l}(\mathbf{D}_{s}^{l}, \mathbf{D}_{t}^{l})$$

2. To further exploit the unlabeled data in target domain, empirical risk is considered as semi-supervised model in [5]:

$$\min_{\mathbf{W},\{\hat{y}_{j}\}_{j=1}^{N},\boldsymbol{\alpha}} \frac{1}{M} \sum_{i=1}^{M} \ell(\mathbf{x}_{i}^{s}, y_{i}^{s}; \mathbf{W}) + \gamma \frac{1}{N} \sum_{j=1}^{N} \ell(\mathbf{x}_{i}^{t}, \hat{y}_{i}^{t}; \mathbf{W}) + \lambda \sum_{l \in \{l_{1}, \dots, l_{L}\}} \mathrm{MMD}_{l, w}(\mathbf{D}_{s}^{l}, \mathbf{D}_{t}^{l})$$

[4] Long M, Cao Y, Wang J. Learning Transferable Features with Deep Adaptation Networks[J]., 2015.
[5] Amini, Massih-Reza, and Patrick Gallinari. "Semi-supervised logistic regression." *Proceedings of the* 15th European Conference on Artificial Intelligence. IOS Press, 2002.

Optimization: an extension of CEM[6]

Parameters to be estimated including three parts, i.e., W, α , $\{\hat{y}_{j}^{t}\}_{j=1}^{N}$ The model is optimized by alternating between three steps :

• E-step:

Fixed W, estimating the class posterior probability $p(y_j^t = c | \mathbf{x}_j^t)$ of target samples:

 $p(y_j^t = c \mid \mathbf{x}_j^t) = g(\mathbf{x}_j^t, \mathbf{W})$

[7] Celeux, Gilles, and Gérard Govaert. "A classification EM algorithm for clustering and two stochastic versions." *Computational statistics & Data analysis* 14.3 (1992): 315-332.

Optimization: an extension of CEM[6]

Parameters to be estimated including three parts, i.e., W, α , $\{\hat{y}_{j}^{t}\}_{j=1}^{N}$ The model is optimized by alternating between three steps :

• E-step:

Fixed W, estimating the class posterior probability $p(y_j^t = c | \mathbf{x}_j^t)$ of target samples:

$$p(y_j^t = c \mid \mathbf{x}_j^t) = g(\mathbf{x}_j^t, \mathbf{W})$$

• C-step:

1 Assign the pseudo labels $\{\hat{y}_j^t\}_{j=1}^N$ on target domain: $\hat{y}_j^t = \arg \max p(y_j^t = c | \mathbf{x}_j^t)$ 2 update the auxiliary class-specific weights $\boldsymbol{\alpha}$ for source domain:

$$\alpha_c = \hat{w}_c^t / w_c^s$$
 where $\hat{w}_c^t = \sum_i \mathbf{1}_c (\hat{y}_j^t) / N$

 $\mathbf{1}_{c}(x)$ is an indictor function which equals 1 if x = c, and equals 0 otherwise.

[7] Celeux, Gilles, and Gérard Govaert. "A classification EM algorithm for clustering and two stochastic versions." *Computational statistics & Data analysis* 14.3 (1992): 315-332.

Optimization: an extension of CEM[6]

Parameters to be estimated including three parts, i.e., W, α , $\{\hat{y}_{j}^{t}\}_{j=1}^{N}$

The model is optimized by alternating between three steps :

• M-step:

Fixed $\{\hat{y}_{j}^{t}\}_{j=1}^{N}$ and $\boldsymbol{\alpha}$, updating W. The problem is reformulated as:

$$\min_{\mathbf{W}} \frac{1}{M} \sum_{i=1}^{M} \ell(\mathbf{x}_{i}^{s}, y_{i}^{s}; \mathbf{W}) + \gamma \sum_{j=1}^{N} \ell(\mathbf{x}_{i}^{t}, y_{i}^{t}; \mathbf{W}) + \lambda \sum_{l \in \{l_{1}, \dots, l_{L}\}} \mathrm{MMD}_{l, w}(\mathbf{D}_{s}^{l}, \mathbf{D}_{t}^{l})$$

The gradient of the three items is computable and ${\bf W}$ can be optimized by using a mini-batch SGD.

[7] Celeux, Gilles, and Gérard Govaert. "A classification EM algorithm for clustering and two stochastic versions." *Computational statistics & Data analysis* 14.3 (1992): 315-332.

Experimental results

• Comparison with state-of-the-arts

Method	A→C	W→C	D→C	С→А	$C \rightarrow W$	C→D	Avg.
AlexNet [21]	84.0±0.3	77.9 ± 0.4	81.0±0.4	91.3±0.2	83.2±0.3	89.1±0.2	84.0
LapCNN (AlexNet) [38]	83.6±0.6	$77.8 {\pm} 0.5$	$80.6 {\pm} 0.4$	92.1 ± 0.3	$81.6 {\pm} 0.4$	$87.8 {\pm} 0.4$	83.9
DDC (AlexNet) [36]	84.3 ± 0.5	$76.9 {\pm} 0.4$	80.5 ± 0.2	91.3±0.3	85.5 ± 0.3	89.1±0.3	84.6
DAN (AlexNet) [25]	$86.0 {\pm} 0.5$	81.5 ± 0.3	82.0 ± 0.4	92.0 ± 0.3	$92.6 {\pm} 0.4$	90.5 ± 0.2	87.3
WDAN (AlexNet)	86.9 ±0.1	84.1 ±0.2	83.9 ±0.1	93.1 ±0.2	93.6 ±0.2	93.4 ±0.2	89.2
WDAN* (AlexNet)	87.1±0.2	85.1±0.3	85.2 ± 0.2	$93.2{\pm}0.1$	93.5±0.3	$94.5 {\pm} 0.2$	89.8
GoogLeNet [34]	91.3±0.2	88.2±0.3	88.9±0.3	95.2±0.1	92.5±0.2	94.7±0.3	91.8
DDC (GoogLeNet) [36]	$91.4{\pm}0.2$	88.7 ± 0.3	$89.0 {\pm} 0.4$	95.3 ± 0.2	$93.0{\pm}0.1$	94.9 ± 0.4	92.1
DAN (GoogLeNet) [25]	91.4 ± 0.3	89.7±0.2	89.1 ± 0.4	95.5 ± 0.2	93.1±0.3	$95.3 {\pm} 0.1$	92.3
WDAN (GoogLeNet)	92.2 ±0.2	91.0 ±0.5	89.8 ±0.3	95.5 ±0.3	95.4 ±0.2	95.5 ±0.5	93.2
VGGnet-16 [32]	89.6±0.4	88.1±0.4	$85.4{\pm}0.5$	93.7±0.2	94.3±0.2	93.7±0.2	90.8
DAN (VGGnet-16) [25]	91.2 ± 0.2	$90.6 {\pm} 0.3$	87.1±0.4	$95.7 {\pm} 0.2$	95.3±0.3	94.7 ± 0.1	92.4
WDAN (VGGnet-16)	91.4 ±0.2	91.0 ±0.2	89.0 ±0.3	95.7 ±0.1	95.8 ±0.2	95.9 ±0.3	93.1

Table 1. Experimental results on office-10+Caltech-10

Experimental results

• Empirical analysis

Figure 3. Performance of various model under different class weight bias.

Figure 4. Visualization of the learned features of DAN and weighted DAN.

Summary

- Introduce class-specific weight into MMD to reduce the effect of class weight bias cross domains.
- Develop WDAN model and optimize it in an CEM framework.
- Weighted MMD can be applied to other scenarios where MMD is used for distribution distance measurement, e.g., image generation

Thanks!

Paper & code are available Paper: https://arxiv.org/abs/1705.00609 Code: https://github.com/yhldhit/WMMD-Caffe