

基于视皮层方位选择特性的模版提取 及其在质量评价中的应用

Outline

- Background: Local Structural Descriptors
- □ The Orientation Selectivity Mechanism
- □ The Visual Pattern Modeling
- □ Image Content Extraction
- □ Application 1: Texture Classification
- □ Application 2: Quality Assessment
- □ Conclusion

Video/Image is everywhere (more than 80% info. that we received)

How does the computer understand the digital images?

How does the computer extract information from these digital values?

How does the computer understand the digital images?

Local structural descriptor:

- The human visual system (HVS) is extremely adaptive to extract structures for image perception and understanding.
- The HVS is sensitive to luminance changes:
 - First order statistic values, e.g., mean, variance, etc.
 - The gray-level difference (luminance contrast)...

Local structural descriptor:

- The human visual system (HVS) is extremely adaptive to extract structures for image perception and understanding.
- The HVS is sensitive to luminance changes:
 - First order statistic values, e.g., mean, variance, etc.
 - The gray-level difference (luminance contrast)...

Similar luminance changes, while quite different structure.

Local structural descriptor:

- The human visual system (HVS) is extremely adaptive to extract structures for image perception and understanding.
- The HVS is sensitive to luminance changes:
 - First order statistic values, e.g., mean, variance, etc.
 - The gray-level difference (luminance contrast)...

Similar luminance changes, while quite different structure.

Spatial distribution within neighbor pixels:

- The spatial joint distribution is analyzed with the co-occurring pixel values from neighborhood;
- By using the signed gray-level differences, the famous local binary pattern (LBP) is introduced.

Spatial distribution within neighbor pixels:

- The spatial joint distribution is analyzed with the co-occurring pixel values from neighborhood;
- By using the signed gray-level differences, the famous local binary pattern (LBP) is introduced.

- The LBP succeeds in describing the spatial correlation of the structure.
- However, the signed gray-level difference procedure is too sensitive to disturbance.

Visual orientation:

- The HVS is sensitivity to visual orientation.
- > Orientation information has been widely used in structural descriptor:
 - SIFT, HOG, etc.
- > The HVS exhibits substantial orientation selectivity for scene perception.

The Orientation Selectivity Mechanism

The OS mechanism in the primary visual cortex :

- The HVS responds preferentially to the edge regions of an input scene;
- Because neurons in the primary visual cortex (especially in layer 4) exhibit substantial orientation selectivity

The OS mechanism in the primary visual cortex :

 Orientation selectivity arises from the arrangement of neuron interaction;

 $\mathcal{A}(\mathcal{I}(x | \mathcal{X})) = \mathcal{A}(\mathcal{I}(x | x_1, x_2, \cdots, x_n))$

The Orientation Selectivity Mechanism

The OS mechanism in the primary visual cortex :

 Orientation selectivity arises from the arrangement of neuron interaction;

 $\mathcal{A}(\mathcal{I}(x | \mathcal{X})) = \mathcal{A}(\mathcal{I}(x | x_1, x_2, \cdots, x_n))$

For simplicity, only consider the synapses between the central cell and its excited cells;

 $\mathcal{A}(\mathcal{I}(x \mid \mathcal{X})) \approx \mathcal{A}(\mathcal{I}(x \mid x_1), \mathcal{I}(x \mid x_2), \cdots, \mathcal{I}(x \mid x_n))$

The OS based Visual Pattern Modeling Make S H & K O

The OS modeling : Interaction

- The interaction between two cortical neurons:
 - Excitation if with similar preferred stimuli/orientations;
 - Inhibition if with dissimilar preferred stimuli/orientations.

The OS based Visual Pattern Modeling

The OS modeling : Interaction

- The interaction between two cortical neurons:
 - **Excitation** if with similar preferred stimuli/orientations;
 - Inhibition if with dissimilar preferred stimuli/orientations.
- Preferred orientation of each pixel in an image:

$$\theta(x) = \arctan \frac{\mathcal{L}_{v}(x)}{\mathcal{L}_{h}(x)}$$

The OS based Visual Pattern Modeling

The OS modeling : Interaction

- > The interaction between two cortical neurons:
 - **Excitation** if with similar preferred stimuli/orientations;
 - Inhibition if with dissimilar preferred stimuli/orientations.
- Preferred orientation of each pixel in an image:

$$\theta(x) = \arctan \frac{\mathcal{L}_{\nu}(x)}{\mathcal{L}_{h}(x)}$$

Interaction between two pixels:

$$\mathcal{I}(x \mid x_i) = \begin{cases} + & \text{if } |\theta(x) - \theta(x_i)| < T \\ - & \text{else} \end{cases}$$

The OS based Visual Pattern Modeling Make & Make &

The OS modeling : OS based visual pattern

The arrangement of interactions among the central pixel and its surrounding pixels:

$$\mathcal{P}(x \mid \mathcal{X}) = \mathcal{A}(\mathcal{I}(x \mid x_1), \mathcal{I}(x \mid x_2), \cdots, \mathcal{I}(x \mid x_n))$$

The OS based Visual Pattern Modeling xide

The OS modeling : fundamental pattern extraction

- Too many original patterns: the number of pattern increases exponentially with the neighbor number.
- Pattern reduction: fundamental pattern
 - Patterns with same excitatory subfield represent similar response 90° 315° 0° 45° 135° 225° 270° 180° 0 0 0 0

The OS based Visual Pattern Modeling

The OS modeling : fundamental pattern extraction

- Too many original patterns: the number of pattern increases exponentially with the neighbor number.
- Pattern reduction: fundamental pattern
 - Patterns with same excitatory subfield represent similar response
- Fundamental patterns:
 - A N-neighborhood local receptive field corresponds to N sector domains of the excitatory subfield;
 - E.g., for an 8-neighborhood, there are 8 excitatory subfield, $\{0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 270^{\circ}, 315^{\circ}\}$

OS based structure extraction:

- A successful image structure descriptor should effectively represent:
 - Intensity change;
 - Spatial distribution.
- > The OS based pattern: represents the spatial distribution.
- > For intensity change representation: gradient magnitude,

 $\mathcal{M}(x) = \sqrt{(G_h(x))^2 + (G_v(x))^2}$

OS based structural histogram:

Mapping an image into a structural histogram: with both OS based pattern and gradient magnitude, the structural information is extracted:

$$H_{w}(k) = \sum_{x=1}^{N} \mathcal{M}(x) \, \delta(\mathcal{P}_{f}(x), \mathcal{P}_{f}^{k})$$

where:

$$\delta(\mathcal{P}_f(x), \mathcal{P}_f^k) = \begin{cases} 1 & \text{if } \mathcal{P}_f(x) = \mathcal{P}_f^k \\ 0 & \text{else} \end{cases}$$

Application 1: Texture Classification

Rotation invariance:

西安电子科技大学

XIDIAN UNIVERSITY

Application 1: Texture Classification

Robustness:

24/28

西安电子科技大学

XIDIAN UNIVERSITY

Application 1: Texture Classification Sublaw UNIVERSITY

Texture Classification:

- TC10 database:
- Training: images under 'inca' illumination and '0°' angle (480 images);
- Testing: the other images (480×8 images).

- TC12 database:
- Training: same as that in TC10;
- Testing: images under
 't184' and 'horizon'
 illuminations and nine angles
 (480×2×9 images).

Jinjian Wu et al., "Visual Orientation Selectivity based Structure Description", IEEE TIP2015.

Application 2: Quality Assessment W XIDIAN UNIVERSITY

Structural degradation caused by different distortions:

Application 2: Quality Assessment W XIDIAN UNIVERSITY

Structural degradation caused by different distortions:

Though under a same level of noise, their qualities are different.

Structural degradation caused by different distortions:

28/28

Structural degradation caused by different distortions:

Different distortion types cause different structural degradation

Application 2: Quality Assessment

Quality assessment according to structural degradation:

Dist.	Algo.		RR			FR			
	Crit.	OSS	RRED [22]	WNISM [21]	RRVIF [38]	PSNR	SSIM [2]	MSSIM [39]	FSIM [40]
No. of scalars		16	16	18	2	N	N	Ν	N
j2k	CC	0.932	0.952	0.924	0.932	0.896	0.941	0.957	0.978
	SRCC	0.921	0.946	0.920	0.950	0.889	0.936	0.953	0.971
	RMSE	8.91	7.74	6.18	5.88	11.0	8.51	4.69	5.22
jpg	CC	0.958	0.959	0.876	0.895	0.860	0.951	0.943	0.984
	SRCC	0.944	0.953	0.851	0.885	0.841	0.944	0.942	0.983
	RMSE	8.91	9.08	7.71	7.15	14.5	9.89	5.33	5.72
awgn	CC	0.979	0.946	0.890	0.957	0.982	0.969	0.974	0.965
	SRCC	0.972	0.946	0.870	0.946	0.985	0.963	0.973	0.965
	RMSE	5.58	9.08	7.29	4.66	4.334	6.901	3.65	7.34
gblur	CC	0.972	0.956	0.888	0.955	0.784	0.874	0.955	0.969
	SRCC	0.962	0.952	0.915	0.961	0.782	0.894	0.954	0.971
	RMSE	4.19	5.42	7.22	4.66	11.5	8.96	4.69	4.57
ff	CC	0.924	0.895	0.925	0.944	0.890	0.945	0.947	0.946
	SRCC	0.907	0.918	0.923	0.941	0.890	0.941	0.947	0.950
	RMSE	10.4	12.7	6.25	5.42	13.0	9.36	5.30	9.21
overall	CC	0.863	0.827	0.710	0.725	0.872	0.904	0.943	0.960
	SRCC	0.865	0.830	0.703	0.732	0.876	0.910	0.945	0.963
	RMSE	12.4	15.3	18.4	17.6	13.4	11.7	9.09	7.68

Performance on LIVE database

Quality assessment according to structural degradation:

Overall performance on CSIQ and TID databases

DB	Algo.		RR				FR			
	Crit.	WOSS	RRED [22]	WNISM [21]	RRVIF [38]	PSNR	SSIM [2]	MSSIM [39]	FSIM [40]	
CSIQ	CC	0.901	0.695	0.696	0.698	0.800	0.815	0.900	0.928	
	SRCC	0.895	0.773	0.705	0.733	0.806	0.838	0.914	0.940	
	RMSE	0.113	0.189	0.189	0.182	0.158	0.152	0.115	0.098	
TID	CC	0.782	0.712	0.572	0.535	0.573	0.641	0.842	0.886	
	SRCC	0.759	0.702	0.495	0.500	0.579	0.627	0.853	0.890	
	RMSE	0.829	0.943	1.101	1.134	1.100	1.03	0.723	0.623	

Jinjian Wu et al., "Orientation Selectivity based Visual Pattern for Reduced-Reference Image Quality Assessment", Information Science 2015.

- In this paper, a novel structure descriptor is introduced.
- Inspired by the orientation selectivity mechanism in the primary visual cortex, the interactions among neurons are analyzed.
- By mimicking the excitation/inhibition in a local receptive field, a novel visual pattern is proposed to describe the spatial correlation among pixels.
- Taking both the luminance change and visual pattern into account, a novel structural descriptor is designed.
- Applications on texture classification and quality assessment demonstrate the effectiveness of the proposed structural descriptor.

- Jinjian Wu, et al., "Orientation Selectivity based Visual Pattern for Reduced-Reference Image Quality Assessment", Information Science, vol.351, pp.18-29, July 2016. (source code is available at http://web.xidian.edu.cn/wjj/index.html)
- Jinjian Wu, , et al., "Visual Orientation Selectivity based Structure Description", **IEEE TIP**, Vol. 24, No. 11, PP. 4602-4613, Nov. 2015.
- Jinjian Wu, et al., "Reduced-Reference Image Quality Assessment with Orientation Selectivity based Visual Pattern", IEEE ChinaSIP 2015, Chengdu, Sichuan.
- Jinjian Wu, et al., "Visual Pattern Degradation based Image Quality Assessment", OIT'2015, Beijing, China.
- Jinjian Wu, et al., "Orientation Selectivity based Structure for Texture Classification", SPIE /COS Photonics Asia Conference, 2014, Beijing, China.

Thanks

