Three-dimensional (3D) facial identity and expression analysis: from handcrafted to learned features

Huibin Li (李慧斌)

http://gr.xjtu.edu.cn/web/huibinli

数学与统计学院 西安交通大学

VALSE webinar, October 12th, 2016

What is biometrics?

Why 3D face recognition?

2D face recognition Illumination, pose, make up...

even-Camera Studio Setur

3D face recognition stable to lighting, pose and make up ...

3D face acquisition

- structure lighting: encoding structure light
- Multi-view stereo: computer stereo vision
- Photometric stereo: shape from shading
- Laser scanner

3D face recognition

basic processing flow

face scan normalization

registration

feature

3D face recognition scenario

• Verification (1:1 matching)

same person?

Identification (1:N matching)

Who he is?

gallery subjects (training set) probe (user)

Main challenges: expression variations

Main challenges: pose variations

Main challenges: facial occlusions

Related works

Author	Journal	Е	Ρ	0	Registration
1. Samir & Daoudi et al.	PAMI-2006		×	×	\checkmark
2. Chang & Bowyer et al.	PAMI-2006		×	×	\checkmark
3. Kakadiaris et al.	PAMI-2007	\checkmark	×	×	\checkmark
4. Lu & Jian	PAMI-2008		×	×	\checkmark
5. Mian et al.	PAMI-2007	\checkmark	×	×	
6. Wang et al.	PAMI-2008	\checkmark	×	×	\checkmark
7. Berretti & Pala et al.	PAMI-2010	\checkmark	×	×	\checkmark
8. Queirolo et al.	PAMI-2010	\checkmark	×	×	\checkmark
9. Kakadiaris et al.	PAMI-2011	\checkmark	\checkmark	×	\checkmark
10. Drira & Daoudi et al.	PAMI-2012	\checkmark	\checkmark	\checkmark	\checkmark

E: expression, P: pose, O: occlusion

Related works

Author	Journal	Е	Ρ	0	Registration
11. Bronstein et al.	IJCV-2005		×	×	
12. Mian et al.	IJCV-2008	\checkmark	×	×	\checkmark
13. Samir & Daoudi et al.	IJCV-2009		×	×	\checkmark
14. Al-Osaimi & Mian et al.	IJCV-2009		×	×	
15. Spreeuwers	IJCV-2011	\checkmark	×	×	
16. Faltemier et al.	TIFS-2008		×	×	\checkmark
17. Alyuz & Gokberk et al.	TIFS-2010		×	×	\checkmark
18. Huang et al.	TIFS-2012	\checkmark	\checkmark	×	imes (near frontal)
19. Berretti & Pala et al.	TIFS-2013	\checkmark	\checkmark	×	\checkmark
20. Alyuz & Gokberk et al.	TIFS-2013		×	\checkmark	\checkmark

E: expression, P: pose, O: occlusion

Motivation

Develop a 3D face recognition method which has potential for real biometric applications:

- 1. It can deal with expression, pose and occlusion issues in a unified framework.
- 2. It can be fully automatic and totally registration needless.

expression

occlusion

pose

registration

SIFT-like matching for 2D images

SIFT (SIFT ICCV 1999,IJCV 2004) keypoint detection, description and matching

Point signature (IJCV 1997), Spin image (PAMI 1999)

Mian et al. (IJCV 2007)

2.5D SIFT (CVIU 2009)

meshHOG (CVPR 2009)

meshSIFT (BTAS 2010, CVIU2013)

Huang et al. (BTAS 2010, TIFS2012)

Our work (SHREC 2011, ICIP 2011)

Quasi-mesh-daisy local shape descriptor based free-form surface matching framework

Stefano Berretti (Computer & Graphics 2013)

3D scan

16

Overview of our approach

Fig. 1 Overview of the proposed method. 3D keypoint detection: from top to bottom, the original face scan and three smoothed face scans, their corresponding minimum principal curvature, Differences of Gaussian maps, and the detected 3D keypoints. The same procedures are also carried out for maximum principal curvature; 3D keypoint description: canonical direction assignment, quasi-daisy descriptor configuration, and descriptor representation by multi-order surface differential quantities; 3D keypoint matching: SIFT-like coarse-grained matching (*top*) and multi-task sparse representation-based fine-grained matching (*bottom*).

3D keypoint detection

1. Scale-space construction

$$\mathbf{p}_{s} = \frac{\sum_{\mathbf{q}\in\mathcal{N}(\mathbf{p},1)} w_{s}(\mathbf{p},\mathbf{q})\cdot\mathbf{q}}{\sum_{\mathbf{q}\in\mathcal{N}(\mathbf{p},1)} w_{s}(\mathbf{p},\mathbf{q})},\tag{1}$$

$$w_s(\mathbf{p}, \mathbf{q}) = G_{\sigma_s}(d_e(\mathbf{p}, \mathbf{q})) = \exp(-\|\mathbf{p} - \mathbf{q}\|^2 / 2{\sigma_s}^2).$$
(2)

2. Scale-space extrema

$$f(x,y) = \frac{A}{2}x^{2} + Bxy + \frac{C}{2}y^{2} + Dx^{3} + Ex^{2}y + Fxy^{2} + Gy^{3} \quad (3)$$

$$\rho(C_{M}, \mathbf{p}_{s}) = C_{M}(\mathbf{p}_{s}) - C_{M}(\mathbf{p}_{s-1}), \quad (4)$$

$$\rho(C_{m}, \mathbf{p}_{s}) = C_{m}(\mathbf{p}_{s}) - C_{m}(\mathbf{p}_{s-1}). \quad (5)$$

3D keypoint detection

Fig. 2 The detected 3D keypoints by C_M (top) and C_m (bottom) for a neutral face, a happy face, a 45° rotated face, and a face with mouth occlusion

Multi-order Surface Differential Quantities

3D keypoint description

1. Canonical direction assignment

2. Spatial configuration

3D keypoint matching

• Coarse Grained Matcher (CGM): SIFT-like matcher

Fine Grained Matcher (FGM): SR-like matcher

subject based reconstruction error
$$\begin{split} \mathbf{e}_1 &= \begin{bmatrix} 0.12 \ 1.00 \ 1.00 \ 0.88 \ 1.00 \end{bmatrix}^{\mathrm{T}} \\ \mathbf{e}_2 &=, \cdots, \mathbf{e}_5 = \\ \text{Similarity: average reconstruction error} \\ \mathbf{\bar{e}} &= \begin{bmatrix} 0.15 \ 0.98 \ 0.95 \ 0.80 \ 0.92 \end{bmatrix}^{\mathrm{T}} \end{split}$$

3D keypoint matching

Dataset and evaluation protocol

Bosphorus 3D Face Database: 4666 3D scans of 105 subjects,

around 34 expressions, 13 poses, and 4 occlusions for each subject

• Basic expressions neutral, anger, disgust, fear, happy, sad, and surprise

lower, upper and combined action units action units

• yaw rotations of 10, 20, 30, 45, and 90 degrees, pitch rotation, cross rotations

occlusions

 Gallery: first 105 neutral scans, Probe: other scans

Experimental results: fusion

Experimental results: expression subset

 Table 1
 Performance in terms of rank-one recognition rates on the subsets of expressions, poses, occlusions, unlabeled, and the entire Bosphorus database

	HOG (%)		HOS (%)		HOGS (%	HOGS (%)		HOMQ (%)	
	CGM	FGM	CGM	FGM	CGM	FGM	CGM	FGM	
Neutral (105 scans) vs. expressions (2,797 scans)									
Neutral (194)	99.48	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
Anger (71)	69.01	91.55	87.32	98.59	76.06	94.37	88.73	97.18	
Disgust (69)	50.72	84.06	56.52	78.26	60.87	88.41	76.81	86.96	
Fear (70)	71.43	92.86	88.57	92.86	84.29	94.29	92.86	98.57	
Happiness (106)	79.25	91.51	85.85	96.23	75.47	98.11	95.28	98.11	
Sadness (66)	80.30	95.45	90.91	96.97	86.36	96.97	95.45	100.0	
Surprise (71)	81.69	100.0	97.18	100.0	84.51	97.18	98.59	98.59	
LAU (1,549)	88.96	96.97	95.09	98.13	90.70	98.52	97.22	98.84	
UAU (432)	94.21	99.07	98.15	100.0	95.14	99.54	99.07	100.0	
CAU (169)	92.90	100.0	97.04	99.41	95.86	100.0	98.82	100.0	
All (2,797)	88.09	96.96	94.32	97.96	90.24	98.32	96.89	98.82	

Experimental results: pose subset

 Table 1
 Performance in terms of rank-one recognition rates on the subsets of expressions, poses, occlusions, unlabeled, and the entire Bosphorus database

	HOG (%)		HOS (%)		HOGS (%)	HOGS (%)		HOMQ (%)	
	CGM	FGM	CGM	FGM	CGM	FGM	CGM	FGM	
Neutral (105 scans) v	s. poses (1,365 sc	ans)							
YR10 (105)	98.10	100.0	100.0	100.0	96.19	100.0	100.0	100.0	
YR20 (105)	90.48	99.05	96.19	99.05	87.62	98.10	99.05	100.0	
YR30 (105)	84.76	98.10	92.38	100.0	75.24	96.19	98.10	99.05	
YR45 (210)	49.52	89.05	80.48	91.90	49.05	84.76	90.95	97.62	
YR90 (210)	07.62	16.67	17.62	25.24	02.86	10.00	33.33	47.14	
YR (735)	55.37	72.65	69.25	76.19	51.84	71.43	77.96	84.08	
PR (419)	94.27	99.28	96.90	98.57	84.73	99.28	98.81	99.52	
CR (211)	60.66	90.05	79.62	94.79	48.34	89.10	94.31	99.05	
All (1,365)	68.13	83.52	79.34	85.93	61.39	81.47	86.89	91.14	

Experimental results: CMC curves

Experimental results: occlusion subset

 Table 1
 Performance in terms of rank-one recognition rates on the subsets of expressions, poses, occlusions, unlabeled, and the entire Bosphorus database

	HOG (%)		HOS (%)	HOS (%)		HOGS (%)		HOMQ (%)	
	CGM	FGM	CGM	FGM	CGM	FGM	CGM	FGM	
Neutral (105 scans) vs. occlusions (381 scans)									
E-Hand (105)	96.19	100.0	100.0	100.0	96.19	100.0	100.0	100.0	
M-Hand (105)	90.48	100.0	97.14	98.10	93.33	99.05	99.05	100.0	
E-Glasses (104)	95.19	100.0	97.12	97.12	97.12	97.12	100.0	100.0	
F-Hair (67)	86.57	94.03	94.03	91.04	86.57	82.09	97.01	95.52	
All (381)	92.65	98.95	97.38	97.90	93.96	96.59	99.21	99.21	
Neutral (105 scans) vs.	unlabeled scans	(18 scans)							
All (18)	88.89	100.0	100.0	100.0	94.44	100.0	100.0	100.0	
Neutral (105 scans) vs.	all meshes exce	pt yaw 90 (4,35	1 scans)						
All (4,351)	86.12	96.81	93.61	97.70	85.75	97.15	97.04	98.94	
Neutral (105 scans) vs.	all scans (4,561	scans)							
All (4,561)	82.50	93.12	90.11	94.37	81.93	93.14	94.10	96.56	

Four proposed keypoint descriptors (HOG, HOS, HOGS, and HOMQ) combined with two keypoint matchers (CGM and FGM) are compared with each other. The names and the number of probe scans for each subset are listed in the left-hand column

whole dataset

Experimental results: comparisons

Table 2 Comparison of rank-one recognition rates on the subsets of expressions, poses, occlusions, and the entire Bosphorus database.

	Expressions	Poses	YR	YR90°	PR	CR
Alyüz et al. (2008)	-	-	-	- h	ost r	atel
Alyüz et al. (2010)	98.2%	-	-	-	-	
Colombo et al. (2011)	-	-	-	-	-	-
Ocegueda et al. (2011)	98.2%	-	-	-	-	-
Drira et al. (2013)	-	-	-	-	-	-
Smeets et al. (2013)	97.7%	84.2%	-	24.3%	-	-
Berretti et al. (2013)	95.7%	88.6%	81.6%	45.7%	98.3%	93.4%
This paper	98.8%	91.1%	84.1%	47.1%	99.5%	99.1%
	Occlusions	E-Hand	M-Hand	E-Glasses	F-Hair	All scans
	93.6%	93.6%	93.6%	97.8%	89.6%	-
	-	-	-	-	-	-
	87.6%	91.1%	74.7%	94.2%	90.4%	-
	-	-	-	-	-	-
	87.0%	97.1%	78.0%	94.2%	81.0%	-
	-	-	-	-	-	93.7%
	93.2%	-	-	-	-	93.4%
	99.2%	100%	100%	100%	95.5%	96.6%

Experimental results: FRGC v2.0 database

Table 14Performance comparison on the whole FRGC v2.0 database.

Method	Year	Data format	Face alignment	Rank-one score
Chang <i>et al</i> . [14]	2006	Range	Yes	91.9%
Kakadiaris et al. [29]	2007	Range	Yes	91.9%
Mian <i>et al.</i> [38]	2007	Range	Yes	96.2%
Mian <i>et al.</i> [39]	2008	Range	Yes	93.5%
Faltemier et al. [19]	2008	Range	Yes	97.2%
Alosaimi et al. [2]	2009	Range	Yes	96.5%
Alyuz et al. [3]	2010	Range	Yes	97.5%
Queirolo et al. [46]	2010	Range	Yes	98.4%
Wang <i>et al</i> . [61]	2010	Range	Yes	98.3%
Huang <i>et al.</i> [25]	2011	Range	Yes	97.2%
Spreeuwers [54]	2011	Range	Yes	99.0%
Li <i>et al</i> . [30]	2011	Range	Yes	96.3%
Ballihi <i>et al</i> . [6]	2012	Mesh	Yes	98.2%
Smeets et al. [53]	2013	Mesh	No	89.6%
MV-HOMQ/FGM	2013	Mesh	No	96.3%

Discussion and future work

- 3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, Jianwei Wan. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI): 2014, 36(11), 2270-2287
- 2. A Comprehensive Performance Evaluation of 3D Local Feature Descriptors, Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, Jianwei Wan, Ngai Ming Kwok. International Journal of Computer Vision (IJCV):2016,116(1),66-89
- Rotational Projection Statistics for 3D Local Surface Description and Object Recognition, Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, Min Lu, Jianwei Wan. International Journal of Computer Vision (IJCV): 2013,105(1),63-86
- Performance Evaluation of 3D Keypoint Detectors, Tombari, Federicoand Salti, Samueleand Di Stefano, Luigi, International Journal of Computer Vision (IJCV): 2013, 102:198

Deep learning on manifolds and non-Euclidean domains

5. Geodesic convolutional neural networks on Riemannian manifolds, Jonathan Masci, Davide Boscaini, Michael M. Bronstein, Pierre Vandergheynst, ICCV, 2015.

References and code

- Huibin Li, Di Huang, Jean-Marie Morvan, Yunhong Wang, Liming Chen, Towards 3D Face Recognition, A Registration-Free Approach using Fine-Grained Matching of 3D Keypoint Descriptors, International Journal of Computer Vision (IJCV), 113(2): 128-142, 2015.
- Huibin Li, Di Huang, Pierre Lemaire, Jean-Marie Morvan, Liming Chen: Expression-robust 3D Face Recognition via Mesh-based Histograms of Multiple-order Surface Differential Quantities, IEEE International Conference on Image Processing (ICIP), pp. 3053-3056, Brussels, Belgium, 2011.
- Remco C.Veltkamp, Stefan van Jole, Hassen Drira, Boulbaba Ben Amor, Mohamed Daoudi, Huibin Li, Liming Chen, Peter Claes, Dirk Smeets, Jeroen Hermans, Dirk Vandermeulen, Paul Suetens. SHREC'11 Track: 3D Face Model Retrieval. Euro-graphics Workshop on 3D Object Retrieval (3DOR), page: 89-95, Llandudno, UK, 2011.

Code and demo: http://gr.xjtu.edu.cn/web/huibinli/code/toolbox-FGM-3DKD.rar

Facial expression recognition (FRE)

• Data modality:

visible image

infrared image

3D face scan

• Emotion granularity:

Action unit detection

Basic emotion classification

- Spontaneity: posed and un-posed (spontaneous) expressions
- Expression Intensity: micro-expression, intensity estimation
- Temporal dynamics: video-based, frame-based

This paper: 2D+3D FER, basic emotions, static data

Motivation: hand-crafted v.s. learning-based FER

83 facial points [Tang et al. CVPR-2008]

85 facial points [Berretti et al. ICPR-2010]

64 facial points and 7 regions [Wang et al. CVPR-2006]

	Handcrafted features	Learned Features		
	HOG: Hu et al. [7]	Deep CNN: Khorrami et al. [20]		
2D FER	LBP: Zhao et al. [64]	DBN: Liu et al. [30]		
	Gabor: Zhang et al. [63]	Auto-Encoder: Rifai et al. [38]		
	Depth-SIFT: Berretti et al. [1]			
3D FER	Normal-LBP: Li et al. [23]	Learned feature for 3D FER?		
	Curvature-HOG: Lemaire et al. [22]			
	Handcrafted feature-level fusion			
2D+3D FER	Handcrafted score-level fusion	Learning-based fusion for 2D+3D FER?		
	Savran et al. [41], Li et al. [24]			

There are very limited numbers of 3D faces with expression labels.

Solution: Deep fusion CNN (DF-CNN)

 DF-CNN is an end-to-end training framework for both feature learning and fusion learning.

Approach overview: DF-CNN

Facial attribute maps: depth, texture, curvature and normal

Anger Disgust Fear Happiness Sadness Surprise Anger Disgust Fear Happiness Sadness Surprise

Architecture of DF-CNN:

convolutional layers: pre-trained deep model (e.g., vgg-m-net)
 other layers: randomly initialized

Visualization of feature maps: 1st conv. layer of DF-CNN

Similar to gradient-like facial maps: e.g., normal-LBP facial maps

Visualization of handcrafted and learned features:

learned features by DF-CNN

Visualization of facial expression saliency maps:

The saliency maps indicates the pixel-level importance for FER, where blue color means less important pixels.

Different facial deformations correspond different patterns saliency maps

Datasets and Experimental Protocols

BU-3DFE database I: (standard settings)

60 subjects, 2 high levels of intensity, 6 expressions, 100 times 10-fold cross-validation, DF-CNN training: remaining 40 subjects

- BU-3DFE database II: 2400 samples, 10-fold cross-validation
- Bosphorus database: 60 subjects, 6 expressions, 10-fold cross-validation

Experimental results: BU-3DFE database I

• Comparisons with hand-crafted features

Method	I_g	I_n^x	I_n^y	I_n^z	I_c	I_t	All
MS-LBP	76.47	76.77	77.87	76.41	77.70	71.65	81.74
dense-SIFT	80.29	79.97	82.35	80.95	80.28	75.56	83.16
HOG	81.89	82.09	80.58	81.81	77.95	78.11	83.74
Gabor	77.95	78.80	81.97	81.10	81.65	80.36	84.72
DF-CNN _{svm}	-	-	-	-	-	-	86.86
DF-CNN _{softmax}	-	-	-	-	-	-	86.20

Comparisons with pre-trained deep features

Method	I_g	I_n^x	I_n^y	I_n^z	I_c	I_t	All
caffe-alex-conv5	77.53	78.87	81.50	78.71	80.83	81.40	83.74
vgg-net-m-conv5	80.38	80.37	81.68	81.23	79.23	82.14	84.22
vgg-net-16-conv5-3	81.72	78.55	83.06	81.25	76.95	78.46	83.78
caffe-alex-full7	68.64	73.43	76.64	75.72	74.52	74.45	82.56
vgg-net-m-full7	73.34	74.99	77.51	76.77	68.81	70.93	81.56
vgg-net-16-full7	76.71	72.22	73.87	74.61	64.35	67.03	82.45
DF-CNN _{svm}	-	_	_	_	_	_	86.86
DF-CNN _{softmax}	-	-	-	-	-	-	86.20

Experimental results: BU-3DFE database I

• Comparisons with fine-tuned deep features

Method	I_g	I_n^x	I_n^y	I_n^z	I_c	I_t	All
caffe-alex-ft-full7 _{svm}	79.44	79.84	80.51	79.50	79.46	80.83	84.05
vgg-net-m-ft-full7 _{svm}	79.68	82.85	82.15	80.30	82.01	81.62	84.85
vgg-net-16-ft-full7 _{svm}	80.21	82.30	82.04	80.43	80.87	84.10	86.01
caffe-alex-ft _{softmax}	78.19	80.96	81.94	78.75	78.89	80.83	83.61
vgg-net-m-ft _{softmax}	78.33	83.06	82.78	81.11	81.11	80.42	85.00
vgg-net-16-ft _{softmax}	78.33	82.08	80.69	79.19	79.31	84.17	85.14
DF-CNN _{svm}	-	_	-	-	-	-	86.86
DF-CNN _{softmax}	-	-	-	-	-	-	86.20

- Approach based on fine-tuned deep features of a pre-trained deep model: (1) Separately fine-tuning the pre-trained deep model by the training data of different types of facial attribute maps;
 - (2) Separately extracting deep features from fine-tuned deep models;
 - (3) Linear SVM and score-level fusion.

Experimental results: BU-3DFE database I Comparisons with state-of-the-art methods

Methods	Data	Feature	Classifier	Accuracy
Wang et al. [52]	3D	curvatures/hist.	LDA	61.79
Soyel et al. [43]	3D	points/distance	NN	67.52
Soyel et al. [44]	3D	points/distance	NN	-
Tang et al. [45]	3D	points/distance	LDA	74.51
Tang et al. [46]	3D	slopes, distance	SVM	-
Mpiperis et al. [34]	3D	deformable model	ML	-
Gong et al. [15]	3D	depth/PAC	SVM	76.22
Berretti et al. [1]	3D	depth/SIFT	SVM	77.54
Maalej et al. [32]	3D	facial curves	SVM	-
Li et al. [26]	3D	normals, curv./hist.	SVM	82.01
Li et al. [23]	3D	normals/LBP	MKL	80.14
Lemaire et al. [22]	3D	curvature/HOG	SVM	76.61
Ocegueda et al. [35]	3D	coordinates, normals curvatures/DWT	Logistic Reg.	-
Zeng et al. [62]	3D	curvatures/LBP	SRC	70.93
Zhen et al. [66]	3D	coordinates, normals, shape index	SVM	84.50
Yang et al. [56]	3D	depth, normals, curv./scattering	SVM	84.80
Zhao et al. [65]	2D+3D	intensity,coordinates, shape index/LBP	BBN	-
Li et al. [24]	2D+3D	meshHOG/SIFT meshHOS/HSOG	SVM	86.32
DF-CNN _{svm}	2D+3D	32-D deep feature	SVM	86.86
DF-CNN _{softmax}	2D+3D	6-D deep feature	Softmax	86.20

Comparison results:

- data modality:
 2D+3D multimodality
- expression features: hand-crafted v.s. learned; high-dimension v.s. low-dim;
- classifiers: non-linear SVM, MKL... v.s. linear SVM, net
- Accuracy: best one

Experimental results: other databases

Method	I_g	I_n^x	I_n^y	I_n^z	I_c	I_t	All
MS-LBP	73.50	74.58	73.54	73.21	73.37	66.08	77.75
dense-SIFT	76.25	75.79	77.42	76.58	75.88	71.79	79.42
HOG	76.25	76.88	76.29	77.75	76.29	72.04	79.71
Gabor	73.04	75.00	78.29	76.42	76.33	75.86	80.00
vgg-net-m-conv5	76.17	75.04	76.92	76.54	75.54	76.42	79.75
vgg-net-m-full7	70.21	69.71	72.67	70.67	67.00	66.83	77.38
vgg-net-m-ft-full7 _{svm}	75.17	76.62	77.08	75.83	78.12	78.67	81.08
vgg-net-m-ft _{softmax}	74.62	75.33	76.96	75.79	77.88	78.54	80.71
DF-CNN _{svm}	-	-	-	-	-	-	81.04
DF-CNN _{softmax}	-	-	-	-	-	-	81.33

Bosphorus database

BU-3DFE database II

Method	I_g	I_n^x	I_n^y	I_n^z	I_c	I_t	All
MS-LBP	71.11	69.44	70.56	66.67	62.78	62.50	73.33
dense-SIFT	70.28	73.89	72.78	73.89	72.50	65.56	76.39
HOG	72.50	74.22	73.89	74.72	71.94	71.94	77.22
Gabor	67.78	73.61	75.83	71.61	75.56	70.56	77.50
vgg-net-m-conv5	71.94	72.50	73.61	71.67	72.78	73.06	79.72
vgg-net-m-full7	61.11	63.33	63.89	65.83	60.56	61.94	75.56
vgg-net-m-ft-full7 _{svm}	71.67	72.78	74.72	76.11	71.94	73.61	79.17
vgg-net-m-ft _{softmax}	71.39	72.78	75.28	75.00	73.33	73.61	79.72
DF-CNN _{svm}	-	-	-	-	-	-	80.28
DF-CNN _{softmax}	-	-	-	-	-	-	80.00

Experimental results: other databases

Comparisons with state-of-the-art methods

Method	BU-3DFE Database II	Bosphorus database
Li et al. (2012) [23]	78.50	75.83
Li et al. (2015) [24]	80.42	79.72
Yang et al. (2015) [56]	80.46	77.50
DF-CNN _{svm}	81.04	80.28
DF-CNN _{softmax}	81.33	80.00

Fear

Surprise

Surprise

Fear

Fear

Surprise

Future work & references

 BP4D-Spontanous: 3D dynamic spontaneous facial expression database: 328 3D face videos, 368,036 frames of 41 subjects, with size about 2.6TB.

- Huibin Li, Jian Sun, Dong Wang, Zongben Xu, Liming Chen, Deep Representation of Facial Geometric and Photometric Attributes for Automatic 3D Facial Expression Recognition, http://arxiv.org/pdf/1511.03015.pdf, 2015.
- Huibin LI, Jian Sun,, Zongben Xu, Liming Chen, Multimodal 2D+3D Facial Expression Recognition with Deep Fusion Convolutional Neural Network, IEEE Transactions on Multimedia, under review.

Conclusion

- A brief introduction of 3DFE and 3DFER
- An overview of SIFT-like matching framework
- Our work: registration-free approach for 3DFE
- Our work: DF-CNN for 3DFER
- Future directions: deep learning on surfaces

Thanks for your attention!