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One-shot learning
Learn a concept (classifier) from one example
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One-shot learning

…

alphabet 1

alphabet 2

char 1 char 2 char 3 char 4 char 5 char 6 char 7 char 8

char 1 char 2 char 3 char 4 char 5 char 6 char 7 char 8
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One-shot learning
Standard approach: similarity learning
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One-shot learning
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Natural choice: siamese network + logistic regression  
    (same/different classifier)
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Tracking as 
one-shot learning
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Tracking as 
one-shot learning
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127x127x3 6x6x128

255x255x3
22x22x128

17x17x1

convolution with 
a dynamic filter…



Learnets
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learnet
siamese

siamese:

learnet: f(z, x) = �('(x;!(z;W 0)), '(z;W ))

f(z, x) = �('(x;W ), '(z;W ))

x

z

x
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Learnets

Are learnets really “learning to learn”?
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Learnets

Are learnets really “learning to learn”?

If we define learning as a procedure that maps a set 
of examples to a function, then yes

8



Practical difficulty:  
Output dimension

Typical number of parameters: 

4096 x 4096 ≈ 2e7 for fully-connected 

3 x 3 x 192 x 256 ≈ 4e6 for convolutional
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Practical difficulty:  
Output dimension

Typical number of parameters: 

4096 x 4096 ≈ 2e7 for fully-connected 

3 x 3 x 192 x 256 ≈ 4e6 for convolutional

To predict this many outputs from a 4096-dim vector: 

4096 x 4e6 ≈ 1e9 params (6.8GB of float32)
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Factorisation: 
Fully-connected case

Inspired by SVD 

Learn constant (non-orthogonal) basis and predict 
weights of diagonal transform 

(Also predict bias)
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W (z) · x = M

0 diag(w(z))Mx

Wx = U diag(s)V T
x



Factorisation: 
Convolutional case

1×1 conv; m×m diag conv (dynamic); 1x1 conv 

diag conv applies one filter to each channel
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𝑤(𝑧) 

𝑀 𝑀′ 
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Implementation detail

• cudnn does not have an efficient primitive for 
diagonal convolution 

• Implemented as dense convolution with zeros 
inserted in off-diagonal
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Conditional embedding
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siamese learnet
learnet

siamese

f(z, x) = �('(x;!(z;W 0)), '(z;!(z;W 0)))

x

z



Experiments

• Omniglot (proof of concept; 28×28 px; small net) 

• Object tracking
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Omniglot
30 training alphabets 
and 20 testing alphabets 

Find match in 20 chars 
from same alphabet 
(chance is 95% error) 

Network: 3 conv layers, 
weighted L1 distance 

Learnet predicts conv2
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Abstract
The process of learning good features for ma-
chine learning applications can be very compu-
tationally expensive and may prove difficult in
cases where little data is available. A prototyp-
ical example of this is the one-shot learning set-
ting, in which we must correctly make predic-
tions given only a single example of each new
class. In this paper, we explore a method for
learning siamese neural networks which employ
a unique structure to naturally rank similarity be-
tween inputs. Once a network has been tuned,
we can then capitalize on powerful discrimina-
tive features to generalize the predictive power of
the network not just to new data, but to entirely
new classes from unknown distributions. Using a
convolutional architecture, we are able to achieve
strong results which exceed those of other deep
learning models with near state-of-the-art perfor-
mance on one-shot classification tasks.

Humans exhibit a strong ability to acquire and recognize
new patterns. In particular, we observe that when presented
with stimuli, people seem to be able to understand new
concepts quickly and then recognize variations on these
concepts in future percepts (Lake et al., 2011). Machine
learning has been successfully used to achieve state-of-
the-art performance in a variety of applications such as
web search, spam detection, caption generation, and speech
and image recognition. However, these algorithms often
break down when forced to make predictions about data for
which little supervised information is available. We desire
to generalize to these unfamiliar categories without neces-
sitating extensive retraining which may be either expensive
or impossible due to limited data or in an online prediction
setting, such as web retrieval.
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Figure 1. Example of a 20-way one-shot classification task using
the Omniglot dataset. The lone test image is shown above the grid
of 20 images representing the possible unseen classes that we can
choose for the test image. These 20 images are our only known
examples of each of those classes.

One particularly interesting task is classification under the
restriction that we may only observe a single example of
each possible class before making a prediction about a test
instance. This is called one-shot learning and it is the pri-
mary focus of our model presented in this work (Fei-Fei
et al., 2006; Lake et al., 2011). This should be distinguished
from zero-shot learning, in which the model cannot look
at any examples from the target classes (Palatucci et al.,
2009).

One-shot learning can be directly addressed by develop-
ing domain-specific features or inference procedures which
possess highly discriminative properties for the target task.
As a result, systems which incorporate these methods tend
to excel at similar instances but fail to offer robust solutions
that may be applied to other types of problems. In this pa-
per, we present a novel approach which limits assumptions
on the structure of the inputs while automatically acquir-
ing features which enable the model to generalize success-
fully from few examples. We build upon the deep learn-
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Omniglot
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Error (%)

Siamese 41.8

Siamese (unshared) 34.6

Learnet 28.6

Siamese learnet 31.4



Object tracking

Same problem as FC Siamese paper 

Network: slim AlexNet (less channels) for speed 

Learnet predicts conv2
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Object tracking
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Accuracy (IoU) Num failures
Siamese 0.465 105
Siamese (unshared) 0.447 131
Siamese learnet 0.500 87



Object tracking

18

Accuracy (IoU) Num failures
Siamese 0.465 105
Siamese (unshared) 0.447 131
Siamese learnet 0.500 87

Accuracy (IoU) Num failures
DSST 0.483 163
MEEM 0.458 107
MUSTer 0.471 132
DAT 0.442 113
SO-DLT 0.540 108



Predicted filters
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· · · · · ·

· · · · · ·

· · · · · ·
z x Predicted filters w(z) Activations

Figure 4: The predicted filters and the output of a dynamic convolutional layer in a siamese learnet
trained for the object tracking task. Best viewed in colour.

Method Accuracy Failures
Siamese ('=B) 0.465 105
Siamese ('=B; unshared) 0.447 131
Siamese ('=B; factorized) 0.444 138
Siamese learnet ('=B; !=A) 0.500 87
Siamese learnet ('=B; !=B) 0.497 93
DAT [17] 0.442 113
SO-DLT [21] 0.540 108

Method Accuracy Failures
Siamese ('=C) 0.466 120
Siamese ('=C; factorized) 0.435 132
Siamese learnet ('=C; !=A) 0.483 105
Siamese learnet ('=C; !=C) 0.491 106
DSST [2] 0.483 163
MEEM [22] 0.458 107
MUSTer [6] 0.471 132

Table 2: Tracking accuracy and number of tracking failures in the VOT 2015 Benchmark, as reported
by the toolkit [10]. Architectures are grouped by size of the main network (see text). For each group,
the best entry for each column is in bold. We also report the scores of 5 recent trackers.

contains both subwindows that do and do not match z. Images z and x are resized to 127⇥ 127 and
255⇥ 255 pixels, respectively, and the triplet (z, x, `) is formed. All 127⇥ 127 subwindows in x are
considered to not match z except for the central 2⇥ 2 ones when ` = +1.

All networks are trained from scratch using SGD for 50 epoch of 50,000 sample triplets (zi, xi, `i).
The multiple windows contained in x are compared to z efficiently by making the comparison layer
� convolutional (fig. 2), accumulating a logistic loss across spatial locations. The same hyper-
parameters (learning rate of 10�2 geometrically decaying to 10�5, weight decay of 0.005, and small
mini-batches of size 8) are used for all experiments, which we found to work well for both the baseline
and proposed architectures. The weights are initialized using the improved Xavier [5] method, and
we use batch normalization [7] after all linear layers.

Testing. Adopting the initial crop as exemplar, the object is sought in a new frame within a radius of
the previous position, proceeding sequentially. This is done by evaluating the pupil net convolutionally,
as well as searching at five possible scales in order to track the object through scale space.

Results and discussion. Tab. 3 compares the methods in terms of the official metrics (accuracy and
number of failures) for the VOT 2015 benchmark [10]. The ranking plot produced by the VOT toolkit
is provided in the supplementary material (fig. B.1). From tab. 3, it can be observed that factorizing
the filters in the siamese architecture significantly diminishes its performance, but using a learnet to
predict the filters in the factorization recovers this gap and in fact achieves better performance than
the original siamese net. The performance of the learnet architectures is not adversely affected by
using the slimmer prediction networks B and C (with less channels).

An elementary tracker based on learnet compares favourably against recent tracking systems, which
make use of different features and online model update strategies: DAT [17], DSST [2], MEEM [22],
MUSTer [6] and SO-DLT [21]. SO-DLT in particular is a good example of direct adaptation of
standard batch deep learning methodology to online learning, as it uses SGD during tracking to
fine-tune an ensemble of deep convolutional networks. However, the online adaptation of the model
comes at a big computational cost and affects the speed of the method, which runs at 5 frames-per-
second (FPS) on a GPU. Due to the feed-forward nature of our one-shot learnets, they can track
objects in real-time at framerates in excess of 60 FPS, while achieving less tracking failures. We
consider, however, that our implementation serves mostly as a proof-of-concept, using tracking as an
interesting demonstration of one-shot-learning, and is orthogonal to many technical improvements
found in the tracking literature [10].
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Figure 3: The predicted filters and the output of a dynamic convolutional layer in a single-stream
learnet trained for the OCR task. Different exemplars z define different filters w(z). Applying the
filters of each exemplar to the same input x yields different responses (although in typical operation,
the network defined by a single exemplar is applied to many other inputs). Best viewed in colour.

Inner-product (%) Euclidean dist. (%) Weighted `

1 dist. (%)
Siamese (shared) 48.5 37.3 41.8
Siamese (unshared) 47.0 41.0 34.6
Siamese (unshared, factorized) 48.4 – 33.6
Siamese learnet (shared) 51.0 39.8 31.4
Learnet 43.7 36.7 28.6

Table 1: Error rate for character recognition in foreign alphabets (chance is 95%).

The single-stream learnet architecture can be understood to predict a discriminant function from one
example, and the siamese learnet architecture to predict an embedding function for the comparison
of two images. These two variants demonstrate the versatility of the dynamic convolutional layer
from eq. (6).

Finally, in order to ensure that any difference in performance is not simply due to the asymmetry of
the learnet architecture or to the induced filter factorizations (sect. 2.2 and sect. 2.3), we also compare
unshared siamese nets, which use distinct parameters for each stream, and factorized siamese nets,
where convolutions are replaced by factorized convolutions as in learnet.

3.2 Character recognition in foreign alphabets

This section describes our experiments in one-shot learning on OCR. For this, we use the Omniglot
dataset [12], which contains images of handwritten characters from 50 different alphabets. These
alphabets are divided into 30 background and 20 evaluation alphabets. The associated one-shot
learning problem is to develop a method for determining whether, given any single exemplar of a
character in an evaluation alphabet, any other image in that alphabet represents the same character or
not. Importantly, all methods are trained using only background alphabets and tested on the evaluation
alphabets.

Dataset and evaluation protocol. Character images are resized to 28⇥ 28 pixels in order to be able
to explore efficiently several variants of the proposed architectures. There are exactly 20 sample
images for each character, and an average of 32 characters per alphabet. The dataset contains a total
of 19,280 images in the background alphabets and 13,180 in the evaluation alphabets.

Algorithms are evaluated on a series of recognition problems. Each recognition problem involves
identifying the image in a set of 20 that shows the same character as an exemplar image (there is
always exactly one match). All of the characters in a single problem belong to the same alphabet.
At test time, given a collection of characters (x1, . . . , xm), the function is evaluated on each pair
(z, xi) and the candidate with the highest score is declared the match. In the case of the learnet
architectures, this can be interpreted as obtaining the parameters W = !(z;W 0) and then evaluating
a static network '(xi;W ) for each xi.

Architecture. The baseline stream ' for the siamese, siamese learnet, and single-stream learnet
architecture consists of 3 convolutional layers, with 2⇥ 2 max-pooling layers of stride 2 between
them. The filter sizes are 5⇥ 5⇥ 1⇥ 16, 5⇥ 5⇥ 16⇥ 64 and 4⇥ 4⇥ 64⇥ 512. For both the siamese
learnet and the single-stream learnet, ! consists of the same layers as ', except the number of outputs
is 1600 – one for each element of the 64 predicted filters (of size 5⇥ 5). To keep the experiments
simple, we only predict the parameters of one convolutional layer. We conducted cross-validation to
choose the predicted layer and found that the second convolutional layer yields the best results for
both of the proposed variants.
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Conclusion
Learnets are an intriguing generalisation of siamese 
networks for one-shot learning 

Much more to explore… 

Predict filters at multiple layers 

Alternative methods of reducing number of 
parameters (e.g. block-diag, sparse, hashing, …) 

Structured ranking loss for Omniglot
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The end

Thanks! 

Questions? 

Also feel free to contact us:  
{luca.bertinetto, jack.valmadre}@eng.ox.ac.uk

21


