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One-shot learning

Learn a concept (classifier) from one example
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One-shot learning
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One-shot learning

Standard approach: similarity learning
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One-shot learning

Natural choice: siamese network + |logistic regression
(same/different classifier)
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Tracking as
one-shot learning
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Tracking as

one-shot learning
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convolution with
a dynamic filter...



| earnets

siamese: f(z,7) =[(p(x; W), p(z; W))

learnet:  f(z,2) = T'(p(z;w(z; W), o(z; W))
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| earnets

Are learnets really “learning to learn™



| earnets

Are learnets really “learning to learn™

It we define learning as a procedure that maps a set
of examples to a function, then yes



Practical difficulty:
Output dimension

Typical number of parameters:
4096 x 4096 ~ 2e7 for fully-connected

3 x3x 192 x 256 = 4e6 for convolutional



Practical difficulty:
Output dimension

Typical number of parameters:

4096 x 4096 ~ 2e7 for fully-connected

3 X 3 x 192 x 256 = 4e6 tor convolutional
To predict this many outputs from a 4096-dim vector:

4096 x 4eb ~ 1€9 params (6.8GB of float32)



Factorisation:
~ully-connected case

Inspired by SVD
Wax = U diag(s)V'z

Learn constant (non-orthogonal) basis and predict
weights of diagonal transform

W(z) -z = M diag(w(z))Mx
(Also predict bias)
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Factorisation:
Convolutional case

1x1 conv; mxm diag conv (dynamic); 1x1 conv

diag conv applies one filter to each channel
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Implementation detall

e cudnn does not have an efticient primitive for
diagonal convolution

* Implemented as dense convolution with zeros
inserted in off-diagonal
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Conditional embedding

i i i F —> _ _ _ _
—{ k = 0O | k = O | %k / aj >|< ” O- ~ * > 0- > >l<
siamese E ‘ 5 I' —
Z > >|< > O > >|< > O » >l<

:>|< > O :>|< > O :>l< w

- x| %
S

W

siamese learnet

learnet

f(z,2) =T (p(z;w(z; W), o(z;w(z; W)))
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EXperiments

* Omniglot (proof of concept; 28x28 px; small net)

* Object tracking

14



Omniglot

30 training alphabets
and 20 testing alphabets

Find match in 20 chars
from same alphabet

(chance is 95% error) E'
&
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Network: 3 conv layers,
weighted L1 distance

Learnet predicts conv?
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Omniglot

Error (%)

Siamese

Siamese (unshared)

Learnet

Siamese learnet

16



Object tracking

Same problem as FC Siamese paper
Network: slim AlexNet (less channels) for speed

Learnet predicts conv?
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Object tracking

Accuracy (loU) Num failures

Siamese
Siamese (unshared)
Siamese learnet
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Object tracking

Accuracy (loU) Num failures

Siamese
Siamese (unshared)

Siamese learnet

Accuracy (loU) Num failures
DSST

MEEM 0.458 107
MUSTer 0.471 132
DAT 0.442 113

SO-DLT 0.540 108
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Predicted filters
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Conclusion

Learnets are an intriguing generalisation of siamese
networks for one-shot learning

Much more to explore...
Predict filters at multiple layers

Alternative methods of reducing number of
parameters (e.qg. block-diag, sparse, hashing, ...)

Structured ranking loss for Omniglot
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IThe end

Thanks!
Questions?

Also feel free to contact us:
{luca.bertinetto, jack.valmadre}@eng.ox.ac.uk
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