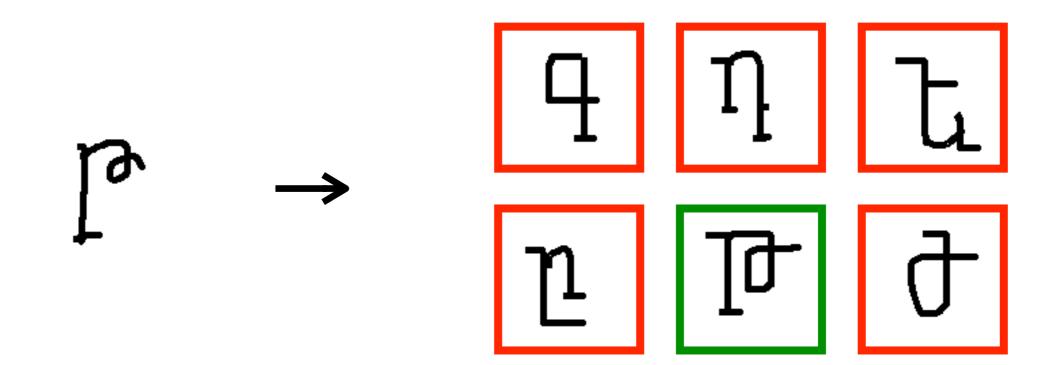
VALSE seminar September 2016

Learning feed-forward one-shot learners

NIPS 2016

Bertinetto* Henriques* Valmadre* Torr Vedaldi University of Oxford

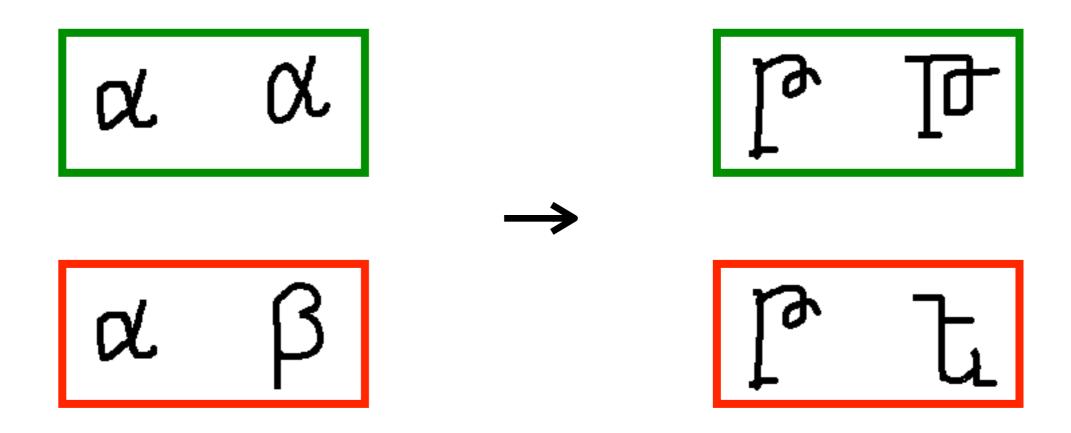
Learn a concept (classifier) from one example



char 2 char 3 char 4 char 5 char 6 char 1 char 7 char 8 αβγδεζη θ alphabet 1 βysεζ d η θ char 2 char 3 char 4 char 5 char 6 char 1 char 7 char 8 ЪЫЬЭ Щ ĽIJ Н Ю) alphabet 2 щъырэ Ю Я

-

Standard approach: similarity learning



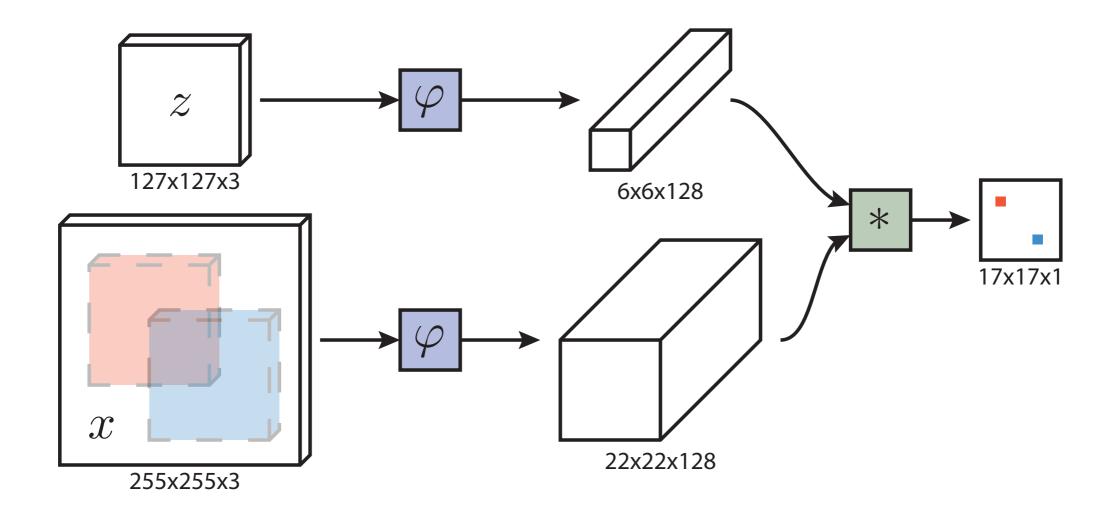
Natural choice: siamese network + logistic regression (same/different classifier)

$$\min_{f} \mathop{\mathbb{E}}_{(z,x,y)} L(y, f(z,x))$$

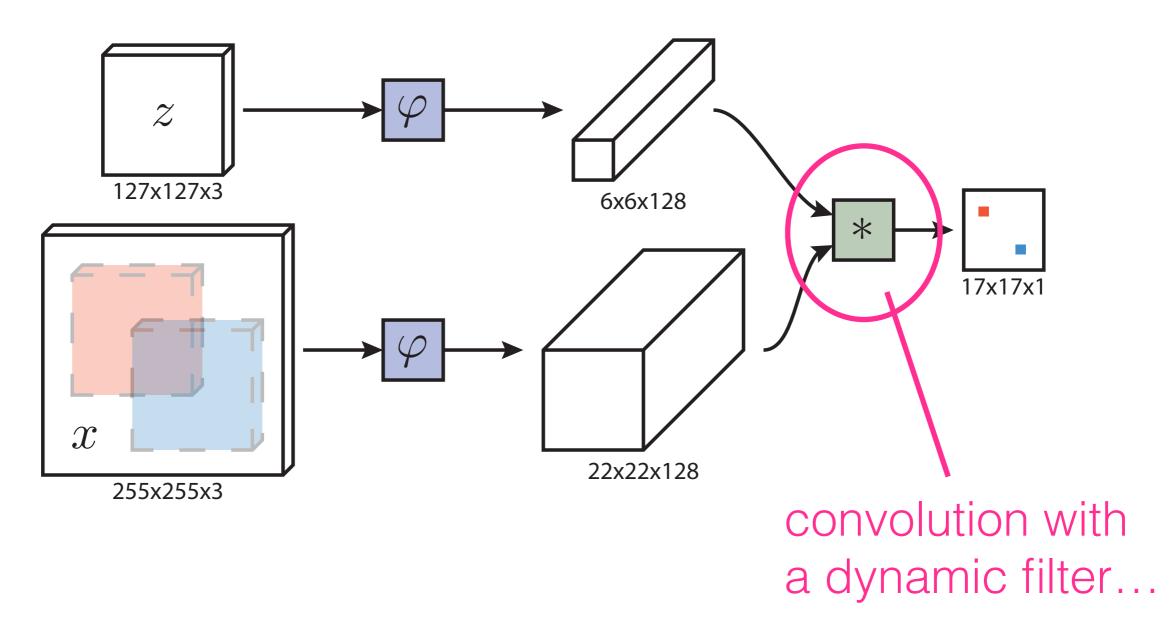
$$\alpha$$
 α +1
 α β -1

z x y

Tracking as one-shot learning

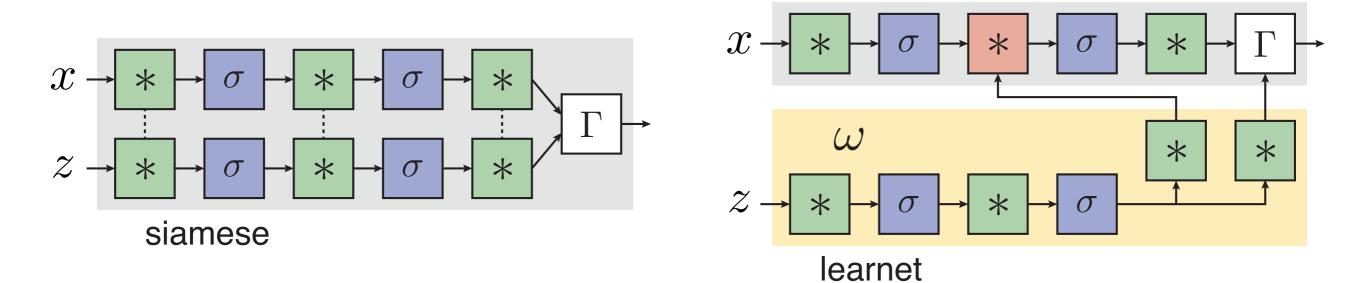


Tracking as one-shot learning



Learnets

siamese: $f(z, x) = \Gamma(\varphi(x; W), \varphi(z; W))$ learnet: $f(z, x) = \Gamma(\varphi(x; \omega(z; W')), \varphi(z; W))$



Learnets

Are learnets really "learning to learn"?

Learnets

Are learnets really "learning to learn"?

If we define learning as a procedure that maps a set of examples to a function, then yes

Practical difficulty: Output dimension

Typical number of parameters:

 $4096 \times 4096 \approx 2e7$ for fully-connected

 $3 \times 3 \times 192 \times 256 \approx 4e6$ for convolutional

Practical difficulty: Output dimension

Typical number of parameters:

 $4096 \times 4096 \approx 2e7$ for fully-connected

 $3 \times 3 \times 192 \times 256 \approx 4e6$ for convolutional

To predict this many outputs from a 4096-dim vector:

 $4096 \times 4e6 \approx 1e9$ params (6.8GB of float32)

Factorisation: Fully-connected case

Inspired by SVD

$$Wx = U\operatorname{diag}(s)V^Tx$$

Learn constant (non-orthogonal) basis and predict weights of diagonal transform

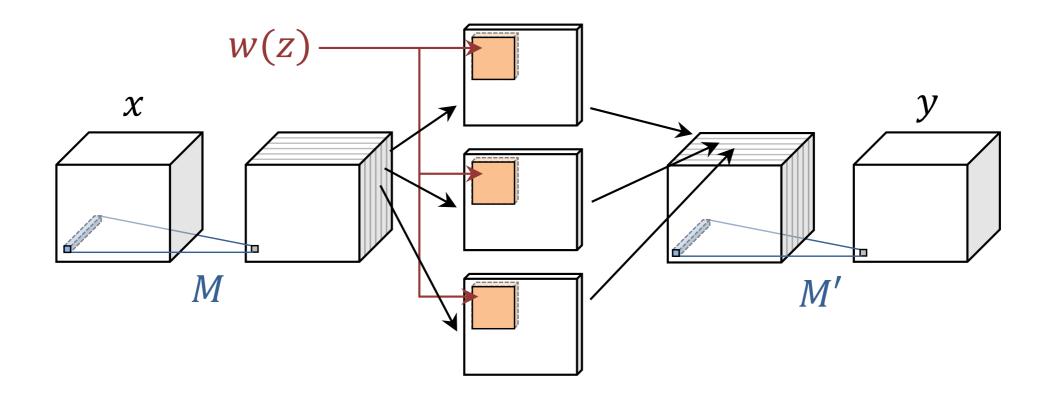
$$W(z) \cdot x = M' \operatorname{diag}(w(z))Mx$$

(Also predict bias)

Factorisation: Convolutional case

1×1 conv; m×m diag conv (dynamic); 1x1 conv

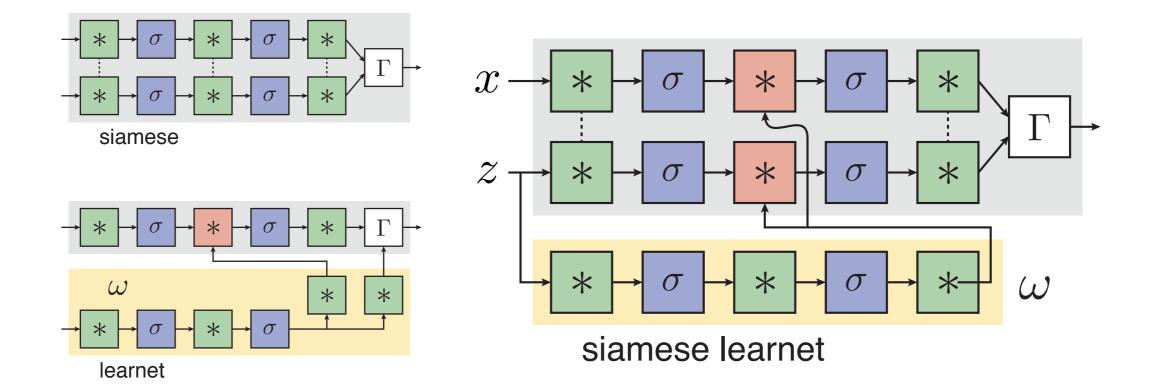
diag conv applies one filter to each channel



Implementation detail

- cudnn does not have an efficient primitive for diagonal convolution
- Implemented as dense convolution with zeros inserted in off-diagonal

Conditional embedding



$$f(z,x) = \Gamma(\varphi(x; \omega(z; W')), \varphi(z; \omega(z; W')))$$

Experiments

- Omniglot (proof of concept; 28×28 px; small net)
- Object tracking

Omniglot

30 training alphabets and 20 testing alphabets

Find match in 20 chars from same alphabet (chance is 95% error)

Network: 3 conv layers, weighted L1 distance

Learnet predicts conv2

シャダネ THE RE CO X B K

Omniglot

	Error (%)
Siamese	41.8
Siamese (unshared)	34.6
Learnet	28.6
Siamese learnet	31.4

Object tracking

Same problem as FC Siamese paper

Network: slim AlexNet (less channels) for speed

Learnet predicts conv2

Object tracking

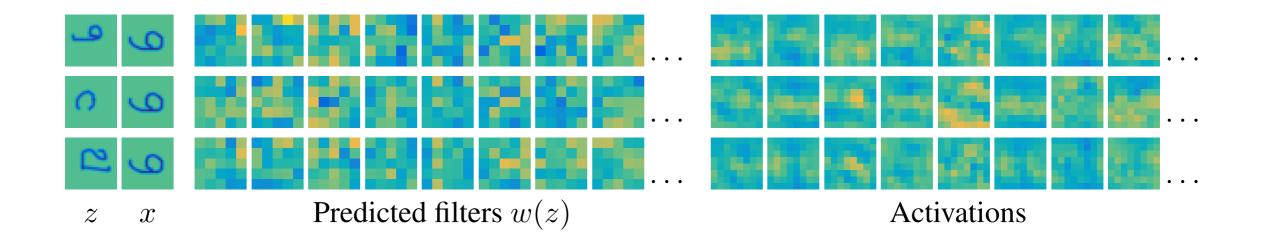
	Accuracy (IoU)	Num failures
Siamese	0.465	105
Siamese (unshared)	0.447	131
Siamese learnet	0.500	87

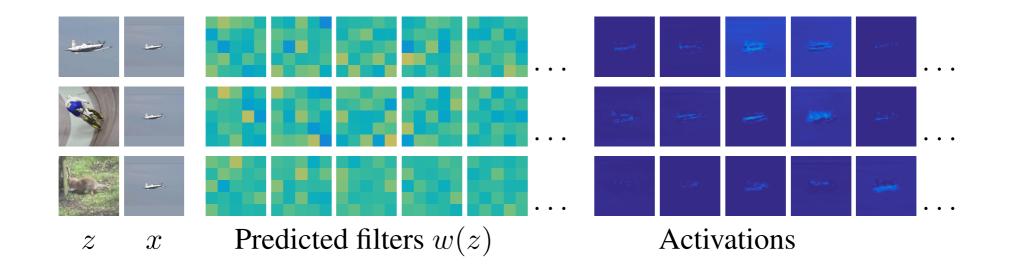
Object tracking

	Accuracy (IoU)	Num failures
Siamese	0.465	105
Siamese (unshared)	0.447	131
Siamese learnet	0.500	87

	Accuracy (IoU)	Num failures
DSST	0.483	163
MEEM	0.458	107
MUSTer	0.471	132
DAT	0.442	113
SO-DLT	0.540	108

Predicted filters





Conclusion

Learnets are an intriguing generalisation of siamese networks for one-shot learning

Much more to explore...

Predict filters at multiple layers

Alternative methods of reducing number of parameters (e.g. block-diag, sparse, hashing, ...)

Structured ranking loss for Omniglot

The end

Thanks!

Questions?

Also feel free to contact us: {luca.bertinetto, jack.valmadre}@eng.ox.ac.uk