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Outline
 Part I: Classification
 Part II: Dimensionality reduction

 Feature selection
 Subspace learning
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Classifiers
 NN: Nearest neighbor classifier
 NC: Nearest centriod classifier
 NFL: Nearest feature line classifier
 NFP: Nearest feature plane classifier
 NFS: Nearest feature space classifier
 SVM: Support vector machines
 SRC: Sparse representation-based classification
 …
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Nearest neighbor classifier 
(NN)
 Given a new example, NN classifies the 

example as the class of the nearest 
training example to the observation.

4



Nearest centriod classifier 
(NC)

 Maybe NC is the simplest classifier.
 Two steps:

 The mean vector of each class in the training 
set  is computed.

 For each test example , the distance to each 
centroid is then given by   . 
NC assigns to class if  is the minimum.
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Nearest feature line classifier
(NFL)
 Any two examples of the same class are 

generalized by the feature line (FL) 
passing through the two examples.
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 The FL distance between and   is 
defined as    . 

 The decision function of class is ,ୀଵ,⋯,
  ஷ   

 NFL assigns to class if  is the 
minimum. 
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S. Li and J. Lu, “Face recognition using the nearest feature line method,”
IEEE Trans. Neural Netw., vol. 10, no. 2, pp. 439–443, Mar. 1999.



Motivation of NFL
 NFL can be seen as a variant of NN.
 NN can only use  examples while NFL 

can use ଶ lines for the th class. For 
example, if  then ଶ =10.

 Thus, NFL generalizes the 
representation capacity in case of only a 
small number of examples available per 
class.
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Nearest feature plane 
classifier (NFP)
 Any three examples of the same class 

are generalized by the feature plane 
(FP) passing through the three 
examples.
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 The FP distance between and   
is defined as     . 

 The decision function of class is ,,ୀଵ,⋯,
  ஷஷ   

 NFP assigns to class if  is the 
minimum. 
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Nearest feature space 
classifier (NFS)
 NFS assigns a test example to class

if the distance from to the subspace 
spanned by all examples  of class : ఉ  
is the minimum among all classes.
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 Nearest neighbor classifier (NN)
 Nearest feature line classifier (NFL)
 Nearest feature plane classifier (NFP)
 Nearest feature space classifier (NFS) 

NN (Point) -> NFL (Line) -> NFP (Plane) -> NFS (Space)
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Representative vector 
machines (RVM)

 Although the motivations of the
aforementioned classifiers vary, they can
be unified in the form of “representative
vector machines (RVM)” as follows:

arg  min  i ik y a= −

current test example

representative vector to represent the ith class for y

predicted class label for y
13
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SVM-> Large Margin 
Distribution Machine (LDM)

SVM LDM
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margin mean

margin variance

T. Zhang and Z.-H. Zhou. Large margin distribution machine. In: 
ACM SIGKDD Conference on Knowledge Discovery and Data 
Mining (KDD'14), 2014, pp.313-322.



The representative vectors of 
classical classifiers
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Comparison of a number of 
classifiers
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Discriminative vector machine
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: -nearest neighbors of
the robust M-estimator

manifold regularization
the vector norm such as ଵ-norm and ଶ-norm



Statistical analysis for DVM
 First, we provide a generalization-error-

like bound for the DVM algorithm by 
using the distribution-free inequalities 
obtained for -local rules.

 Then, we prove that DVM algorithm is a 
PAC-learning algorithm for classification.
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Generalization-error-like 
bound for DVM
Theorem 1: For DVM algorithm with 

, we have

where ௗ is the maximum number of 
distinct points in ௗ (a - dimensional 
Euclidean space) which can share the 
same nearest neighbor and ௗ ௗ . 
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Main results
 Theorem 2: Under assumption 1, DVM 

algorithm is a PAC-learning algorithm for 
classification.

 Lemma 1: For DVM algorithm with
, we have

 Remark 1: Deveroye and Wagner proved a 
faster convergence rate  for . 21



Experimental results using the 
Yale database

22

Method 2 Train 3 Train 4 Train 5 Train
NN 62.79±22.80 72.36±19.92 78.67±17.94 83.23±16.64
NC 66.79±20.83 76.89±17.34 82.91±14.55 86.98±11.82
NFL 70.67±19.36 80.81±15.40 86.93±12.98 91.66±10.30
NFP - 81.54±15.26 88.38±11.47 93.10±8.44
NFS 70.79±19.09 81.25±15.31 88.10±11.56 92.41±8.96
SRC 78.79±15.45 87.27±11.54 91.92±8.66 94.57±6.59
Linear SVM 71.52±18.88 83.15±13.80 89.80±10.80 93.93±8.06
DVM 79.15±14.63 88.57±10.99 92.87±8.83 96.33±6.15

Method 6 Train 7 Train 8 Train 9 Train 10 Train
NN 86.87±15.44 89.94±14.10 92.65±12.55 95.15±10.62 97.58±8.04
NC 90.00±9.73 91.72±7.82 93.09±6.46 93.45±4.71 94.55±2.70
NFL 95.01±7.85 97.31±5.54 98.79±3.40 99.64±1.53 100±0
NFP 96.32±6.01 98.36±3.80 99.43±2.00 99.88±0.90 100±0
NFS 95.37±6.83 97.33±4.84 98.75±3.00 99.64±1.53 100±0
SRC 96.36±5.13 97.47±4.15 98.42±3.11 98.79±2.60 99.39±2.01
Linear SVM 96.41±6.01 98.22±4.07 99.19±2.42 99.76±1.26 100±0
DVM 98.15±4.17 99.21±2.34 99.80±1.15 100± 0 100± 0

Average recognition rates (percent) across all possible partitions on Yale 



Experimental results using the 
Yale database
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Average recognition rates (percent) as functions of the 
number of training examples per class on Yale
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1. DVM outperforms all other methods in all cases
2. NN method has the poorest performance except ‘9 Train’ 

and ‘10 Train’. 



Experimental results on a 
large-scale database FRGC

Method NN NC NFL NFP NFS SRC SVM DVM

OR 78.98±
1.08

55.51±
1.31

85.56±
1.08

88.31±
0.99

89.94±
0.92

95.49±
0.72

91.00±
0.83

88.41±
0.98

LBP 88.52±
1.12

78.33±
0.91

93.37±
1.01

93.38±
1.06

93.42±
0.99

97.56±
0.46

95.27±
0.91

97.28±
0.61

LDA 93.61±
0.76

93.74±
0.79

94.47±
0.83

94.56±
0.86

94.42±
0.84

93.90±
0.70

92.65±
0.86

95.33±
0.64

LBPLDA 96.00±
0.66

95.94±
0.54

95.99±
0.64

95.94±
0.69

95.30±
0.71

93.99±
0.72

95.91±
0.66

96.16±
0.55
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Average recognition rate (percent) comparison on the FRGC dataset 

1. DVM performs the best using LDA and LBPLDA
2. SRC performs the best using original representation (OR) and LBP. 



Experimental results on the 
image dataset Caltech-101

当前无法显示此图像。

25
Sample images of Caltech-101 (randomly selected 20 
classes)



Comparison of accuracies 
on the Caltech-101

Method 15Train 30Train

LCC+SPM 65.43 73.44

Boureau et al. - 77.1±0.7

Jia et al. - 75.3±0.70

ScSPM +SVM 67.0±0.45 73.2±0.54

ScSPM +NN 49.95±0.92 56.53±0.96

ScSPM +NC 61.27±0.69 65.96±0.63

ScSPM +NFL 63.54±0.68 70.17±0.45

ScSPM +NFP 67.09±0.66 74.04±0.30

ScSPM +NFS 68.63±0.63 76.69±0.34

ScSPM +SRC 71.09±0.57 78.28±0.52

ScSPM +DVM 71.69±0.49 77.74±0.46

26
Comparison of average recognition rate (percent) on the 
Caltech-101 dataset



Experimental results on ASLAN

27

Methods Performance

NN 53.95±0.76

NC 57.38±0.74

NFL 54.25±0.94

NFP 54.42±0.72

NFS 49.98±0.02

SRC 56.40±2.76

SVM 60.88±0.77

DVM 61.37±0.68

Comparison of average recognition rate (percent) on the 
ASLAN dataset

1. DVM outperforms all the other methods.



Parameter Selection for DVM
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Accuracy versus ߚ	 with ߛ and ߠ fixed on Yale, FRGC, 
Caltech 101 and ASLAN. The proposed DVM model is stable 
with varying ߚ within 10ିସ, 10ିଵ .



Parameter Selection for DVM
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Parameter Selection for DVM
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Accuracy versus ߠ with	ߚ and	ߛ fixed on Yale, FRGC, 
Caltech 101 and ASLAN. 



“Concerns” on our framework 
 C1: Can this framework unify all

classification algorithms?
 No. Some classical classifiers, such as

naive Bayes, cannot be unified in the
manner of “representative vector
machines”.

31



“Concerns” on our framework 
 C2: Applications.
 C3: Note that the representative vector

framework is a flexible framework. We
can use ଶ distance, ଵ distance, etc.
The selection of an appropriate
similarity measure for different
applications is still an unsolved problem.
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Representative vector 
machines (RVM)
 This work is published in IEEE 

Transactions on Cybernetics:
Jie Gui, Tongliang Liu, Dacheng Tao, Zhenan Sun, 

Tieniu Tan, "Representative Vector Machines: A unified 
framework for classical classifiers", IEEE Transactions 
on Cybernetics, vol. 46, no. 8, pp. 1877-1888, 2016.
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Representative vector 
machines (RVM)

 Although the motivations of the
aforementioned classifiers vary, they can
be unified in the form of “representative
vector machines (RVM)” as follows:

arg  min  i ik y a= −

current test example

representative vector to represent the ith class for y

predicted class label for y
34



Outline
 Part I: Classification
 Part II: Dimensionality reduction

 Feature selection
 Feature extraction

35



What is dimensionality 
reduction?
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What is dimensionality 
reduction?
 Generally speaking, dimensionality 

reduction techniques can be classified 
into two categories:
 Feature selection: to select a subset of 

most representative or discriminative 
features from the input feature set;

 Feature extraction: to transform the 
original input features to a lower 
dimensional subspace through a projection 
matrix. 37



Feature selection
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Feature extraction
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Feature extraction
 Linear (PCA, LDA, etc.)
 Kernel-based (KPCA, KLDA, etc.)
 Manifold learning (LLE, ISOMAP, etc.)
 Tensor (2DPCA, 2DLDA , etc.)
 …
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Please see the Introduction of the following reference:
Jie Gui, Zhenan Sun, Wei Jia, Rongxiang Hu, Yingke Lei and 
Shuiwang Ji, "Discriminant Sparse Neighborhood Preserving 
Embedding for Face Recognition", Pattern Recognition, vol. 45, 
no.8, pp. 2884–2893, 2012



Outline
 Part I: Classification
 Part II: Dimensionality reduction

 Feature selection
 Feature extraction
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Summary

42

A taxonomy of structure sparsity induced feature selection



Notations
 Data matrix ଵ  ௗ×
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Notations
 Label matrix ଵ      ் ×
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What is sparsity?
 Many machine learning and data mining tasks 

can be represented using a vector or a matrix.
 “Sparsity” implies many zeros in a vector or a 

matrix.

45[Courtesy: Jieping Ye] 



Contents
 Vector-based feature selection

 Lasso
 Various variants of lasso
 Disjoint group lasso
 Overlapping group lasso

 Matrix-based feature selection
 ଶ, −norm, ଶ,ଵ-norm, ஶ,ଵ-norm, etc
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Task-driven feature selection
 Multi-task feature selection
 Multi-label feature selection 
 Multi-view feature selection
 Joint feature selection and classification
 Joint feature selection and clustering
 …
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Difference from previous work
 Review of sparsity. 

 eg. Wright et al. [Proceedings of the IEEE, 
2010]

 Cheng et al. [Signal Processing, 2013], etc.

 Review of feature selection.
 Anne-Claire Haury et al. [PLoS ONE, 2011]
 Verónica Bolón-Canedo et al. [KAIS, 2013], 

etc.
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Contributions
 Providing a survey on structure sparsity

induced feature selection (SSFS).
 Exploiting the relationships among different 

kinds of SSFS.
 Evaluating several representative SSFS 

methods.
 Summarizing main challenges and problems 

of current studies, and point out some future 
research directions.
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Lasso
(Tibshirani, 1996, Chen, Donoho, and Saunders, 1999)

minimize‖ݕ − ଶଶ‖ݓ்ܺ + (ݓ)ݕݐ݈ܽ݊݁ଵ‖ݓ‖ߛ = ଵ‖ݓ‖
[Courtesy: Jieping Ye] 



Various variants of lasso
 Adaptive lasso:

 ௗୀଵ
 Fused lasso:

ଵ  ିଵௗୀଶ
51



Various variants of Lasso
 Bridge estimator:

 ఊௗୀଵ
 Elastic net:

ௗୀଵ ଶௗୀଵ
52
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Disjoint group lasso
(Yuan and Lin, 2006)

[Courtesy: Jieping Ye] 



Sparse group lasso
 Sparse group lasso combines both lasso and 

group lasso

ଵ  ீ ୀଵ
 Lasso and group lasso are special cases of 

sparse group lasso

54



Lasso, group lasso and sparse 
group lasso

55

Features can be grouped into 4 disjoint groups {G1,G2,G3,G4}. Each cell 
denotes a feature and light color represents the corresponding cell with 
coefficient zero. [Courtesy: Jiliang Tang] 



Overlapping group lasso
(Zhao, Rocha and Yu, 2009; Kim and Xing, 2010; Jenatton et 
al., 2010; Liu and Ye, 2010)

56[Courtesy: Jieping Ye] 



Graph lasso
(Slawski et al, 2009; Li and Li, 2010; Li and Zhang 
2010)

57

ଵ‖ݓ‖ + ߙ  ܤ ݓ − ݓ ଶ(,)∈ா

[Courtesy: Jieping Ye] 



Matrix-based feature selection
 The  ,-norm of a matrix
 The physical meaning of , -norm of a 

matrix
 ଶ,ଵ-norm based feature selection
 ஶ,ଵ−norm based feature selection
 ଶ,-norm based feature selection
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The  -norm of a matrix

 , ଵ    ௨  
 ଶ,ଵ-norm
 ଶ,-norm
 ଶ,-norm
 ஶ,ଵ-norm
 …
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The physical meaning of -
norm
 If we require most rows of to be 

zero, we have .
 The choice of depends on what kind 

of correlation assumption among 
classes.
 Positive correlation: 
 Negative correlation: 

60



-norm based feature 
selection
 Efficient and robust feature selection via 

joint ଶ,ଵ -norms minimization (RFS)
 Correntropy induced robust feature 

selection
 Feature selection via joint embedding 

learning and sparse regression
 Joint feature selection and subspace 

learning
 … 61



Efficient and robust feature 
selection
(Nie et al., 2010)

62

ௐ  ் ଶୀଵ ଶ,ଵ
ௐ ் ଶ,ଵ ଶ,ଵ

Least squares regression

Feature selection



Correntropy induced robust 
feature selection
(He et al., 2012)

63

( )( ) 2 ,11
min

in T
iW

X W Y Wφ λ
=

− +

the robust M-estimator Feature selection



FS via joint embedding learning 
and sparse regression
(Hou et al., 2011; Hou et al., 2014 )

( ) 2

,2,
min + +  
T

m m

pT T
r pW ZZ I

tr ZLZ W X Z Wβ α
×=

−

Laplacian matrix Feature selection

Regression to low dimensional representation



Joint feature selection and 
subspace learning
(Gu et al., 2011)

ௐ  ଶ,ଵ ் ்
   ் ்

 First term : Feature selection
 Second term: 


ௐ  ் ்
   ் ்

 the objective function of graph embedding 
(Yan et al., 2007)



-norm based feature selection
(Masaeli et al., 2010)

 ௐ ் ௪ ିଵ ்  + ஶ,ଵ
Linear discriminant analysis Feature selection



-norm based feature selection
(Cai et al, 2013)


ௐ, ்  ଶ,ଵଶ,

 Since the regularization parameter of
this method has the explicit meaning,
i.e., the number of selected features, it
alleviates the problem of tuning the
parameter exhaustively.

the bias vector



Summary

68

A taxonomy of structure sparsity induced feature selection



Experiments
 Compared methods – 9 traditional 

methods
 Chi square
 Data variance
 Fisher score
 Gini index
 Information Gain
 mRMR
 ReliefF
 T-test
 Wilcoxon rank-sum test
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Software package

70
http://featureselection.asu.edu/software.php

Huan Liu
(刘欢)



Experiments
 Compared methods – 5 structured 

sparsity based
 CRFS (He, 2012)
 DLSR-FS (Xiang, 2012)
 ଵ (Destrero, 2007)
 ଶ, (Cai, 2013)
 RFS (Nie,2010)
 UDFS (Yang, 2011)

71



Data set
Data set Category Total number Classes Dimension

AR face 400 40 644

Umist face 575 20 2576

Coil20 image 1440 20 256

vehicle UCI 846 4 18

Lung Microarray 203 5 3312

TOX-171 Microarray 171 4 5748

MLL Microarray 72 3 5848

CAR Microarray 174 11 9182
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AR data set
 120 classes, 7 examples for each 

classes, 3 examples per class for 
training

 20 random splitting
 In each random splitting, cross 

validation was used to tune the 
parameter of linear SVM and feature 
selection algorithms
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Results of AR face data set

74
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Results of AR face data set
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Accuracy versus the number of selected features. 
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Results of AR face data set
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Accuracy versus the number of selected features. 
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Results of AR face data set
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Accuracy versus the number of selected features. 
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Some preliminary analyses
 Generally speaking, mRMR performs 

better than other traditional feature 
selection methods.

 No single method can always beat other 
methods.

 Traditional vs Sparse
 Sparse wins 15 times in all 22 experiments.
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Some preliminary analyses
 However, the improvement of the 

structure sparsity induced feature 
selection methods over the traditional 
methods is marginal. 

 Future research directions?

79



 This work is accepted in IEEE 
Transactions on Neural Networks and 
Learning Systems:
Jie Gui, Zhenan Sun, Shuiwang Ji, DachengTao, 

Tieniu Tan, "Feature Selection Based on Structured 
Sparsity: A Comprehensive Study", IEEE Transactions 
on Neural Networks and Learning Systems，
DOI:10.1109/TNNLS.2016.2551724.
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Outline
 Part I: Classification
 Part II: Dimensionality reduction

 Feature selection
 Feature extraction
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Feature extraction
 How to estimate the regularization 

parameter for spectral regression 
discriminant analysis and its kernel 
version?

 An optimal set of code words and 
correntropy for rotated least squares 
regression

82



 Spectral regression discriminant analysis 
(SRDA) has recently been proposed as an 
efficient solution to large-scale subspace 
learning problems.

 There is a tunable regularization 
parameter in SRDA, which is critical to 
algorithm performance. However, how to 
automatically set this parameter has not 
been well solved until now. 



Jie Gui, et al., "How to estimate the regularization 
parameter for spectral regression discriminant analysis and 
its kernel version?", IEEE Transactions on Circuits and 
Systems for Video Technology, vol. 24, no. 2, pp. 211-223, 
2014



Feature extraction
 How to estimate the regularization 

parameter for spectral regression 
discriminant analysis and its kernel 
version?

 An optimal set of code words and 
correntropy for rotated least 
squares regression

85



Least squares regression (LSR)

• LSR solves the following problem to obtain the 
projection matrix ௗ× and bias×ଵ

• The above equation can be equivalently 
rewritten as follows:

• LSR is sensitive to outliers.

2 2

1 2,
min n T

i i FiW b
W x b y Wλ

=
+ − +

2 2

2,
min T T

n FW b
X W e b Y Wλ+ − +



Traditional set of code words

• In traditional LSR, the th row and th column 
element of , i.e., , is defined as 

• For example, the traditional set of code words 
for two classes and three classes are

1, if is in the th class
0, otherwise

i
ij

x j
Y


= 


1 0 0
1 0

, 0 1 0 ,
0 1

0 0 1

 
   
       



(a) two classes   (b) three classes
Fig.1. The traditional set of code words



Deficiencies of traditional set of code 
words

• The distance between ଵ and ଶ is not the
maximum in the two-dimensional space. The unit
point pair −1 0 ் and 1 0 ் is one of the farthest
unit point pairs in the two-dimensional space.
Obviously, 0 is redundant, -1 and 1 can be used
instead.

• Here, we introduced an optimal set of code
words, which was proposed in :
Mohammad J. Saberian and Nuno Vasconcelos.
“Multiclass Boosting: Theory and Algorithms,” in Neural
Information Processing Systems, 2011



(a) two classes   (b) three classes
Fig. The optimal set of code words



Example 1

• The traditional set of code words for two
classes and the new set of code words for two
classes are

respectively. 
• Length: 2, 1
• Distance: 

[ ]1 0
, 1 1 ,

0 1
  − 
 



Example 2

• The traditional set of code words for three
classes and the new set of code words for
three classes are

respectively. 
• Length: 3, 2
• Distance: 

3 21 0 0 1 2
0 1 0 , 1 2 3 2 ,
0 0 1 1 0

 −     − −         



Advantages of optimal set of code 
words

• The length of this new set of code words is
less;

• The distance between different classes is
larger.



Correntropy

• LSR is sensitive to outliers. For better
robustness, correntropy is introduced and
thus the objective function is defined as
follows:

where is a Hadamard product operator of
matrices. The term is defined as

( )( ) 2

1, ,
min

in T T
n FiW b M

X W e b Y G M Wφ λ
=

+ − − + 

1, if is in the th class
1, otherwise

i
ij

x j
G


= −



Rotation transformation invariant 
constraint

• Since the commonly utilized distance metrics
in the subspace, such as Cosine and Euclidean,
are invariant to rotation transformation,
additional freedom in rotation can be
introduced to promote sparsity without
sacrificing accuracy.

• With an additional rotation transformation
matrix , our new formulation is defined as:

( )( ) 2

1, , ,
min

. .

in T T
n FiW b M R

T

X W e b YR G M W

s t R R I

φ λ
=

+ − − +

=
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