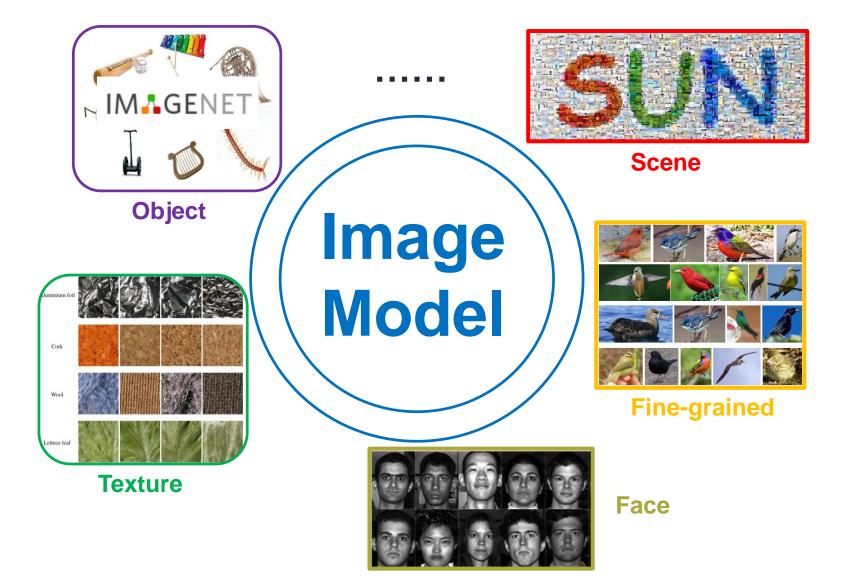


Codebook-free Single Gaussian for Image Classification

Qilong Wang (王旗龙) Dalian University of Technology

http://ice.dlut.edu.cn/PeihuaLi/

Image Model for Classification



Outline

> Modeling Methods in Image Classification

> Towards Effective Codebook-free Model

>Robust Approximate Infinite Dimensional Gaussian

> Future Work and Conclusion

Outline

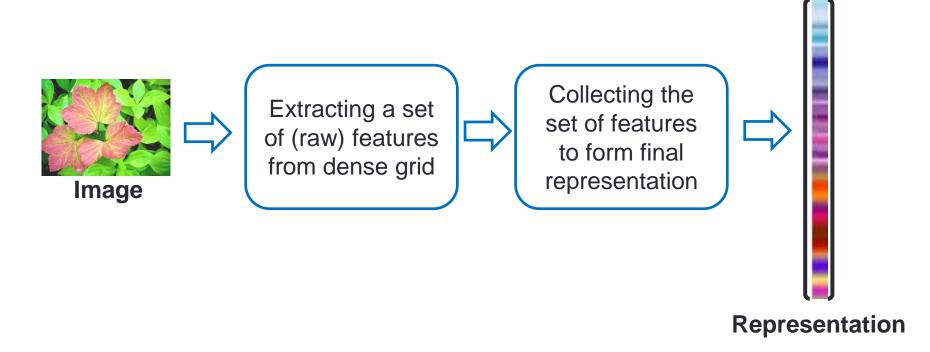
> Modeling Methods in Image Classification

> Towards Effective Codebook-free Model

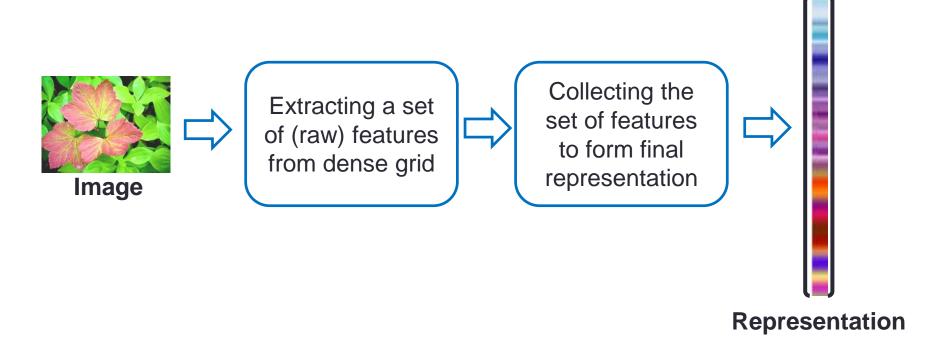
>Robust Approximate Infinite Dimensional Gaussian

Future Work and Conclusion

Modeling Methods in Image Classification



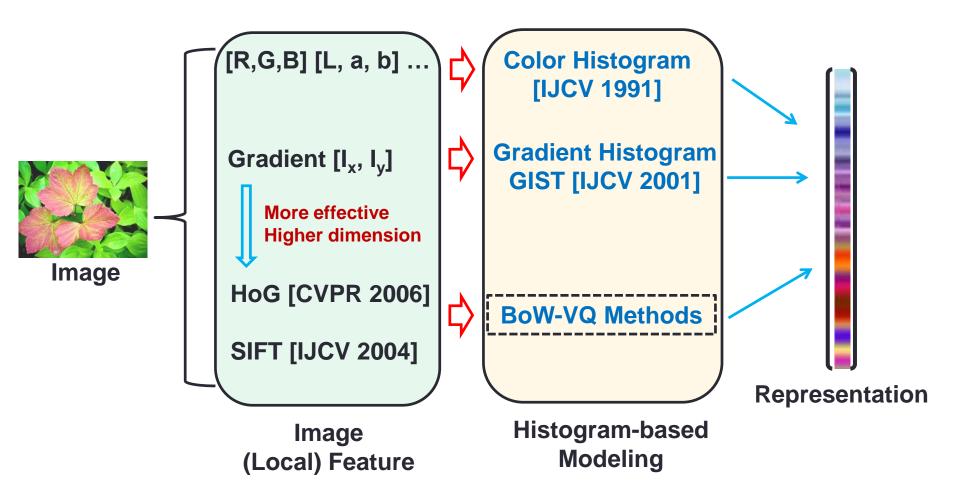
Modeling Methods in Image Classification



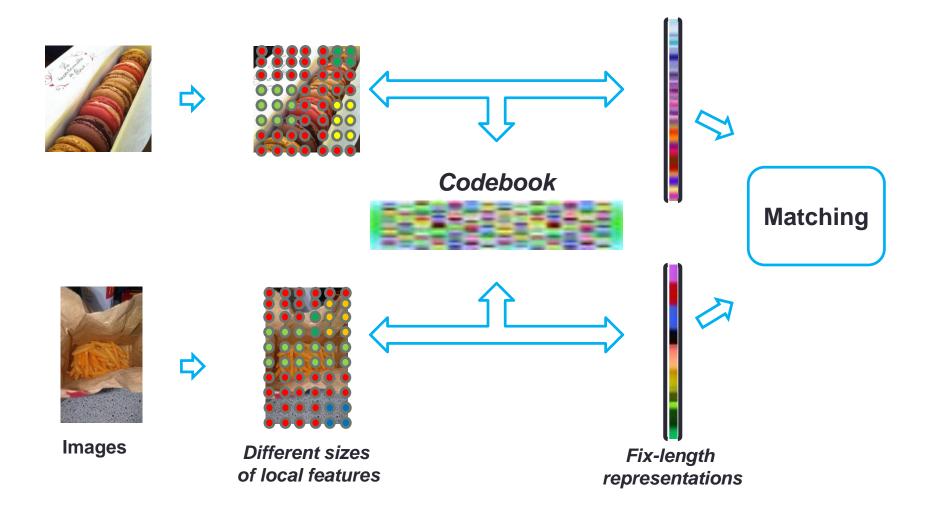
Histogram(Codebook)-based Modeling Methods

Codebook-free Modeling Methods

Histogram-based Modeling Methods



Histogram of HD Local Feature – BoW



Limitations of BoW

The codebook brings quantization error. [Boiman et al. CVPR08] Soft-assignment coding methods

Visual Word Ambiguity [PAMI10], SC [CVPR 09], LLC[CVPR10], LSAC [ICCV 11]
Dictionary enhancement

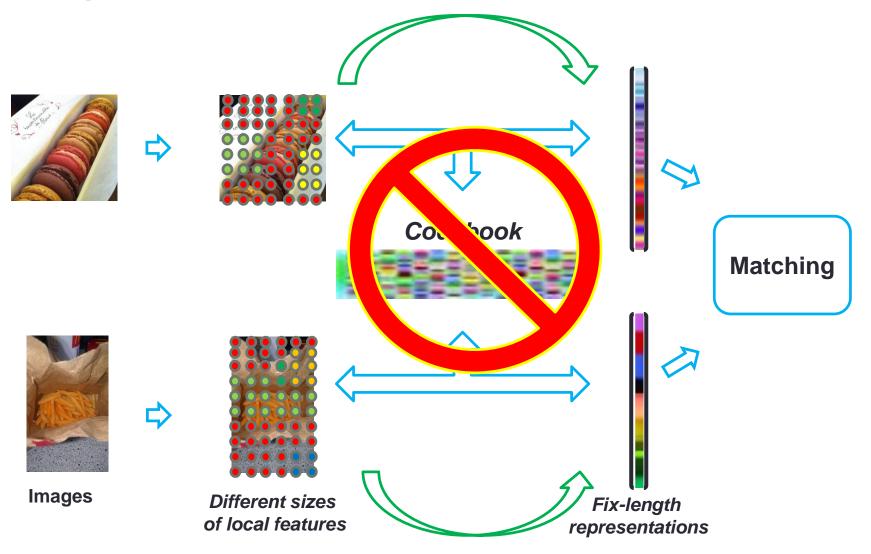
Huge size of dictionary [PAMI15], GMM [IJCV13], Affine subspace [CVPR15] and DL.
Usage of first order and second order information

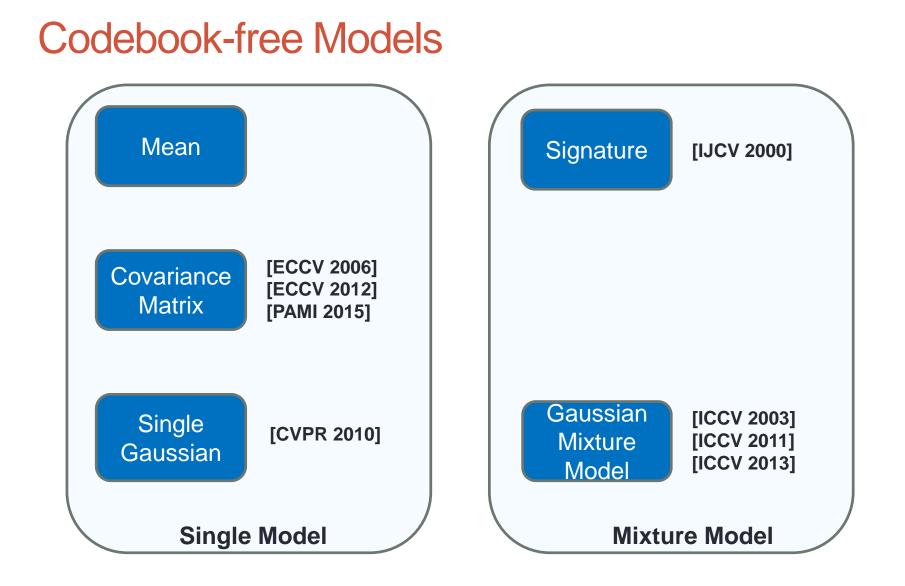
• VLAD[CVPR10], SV[ECCV10], FV[IJCV13], E-VLAD[ECCV14], LASC[CVPR15].

>An all-purpose codebook is unavailable.

• It is difficult to handle online problem, e.g., increasing number of classes.

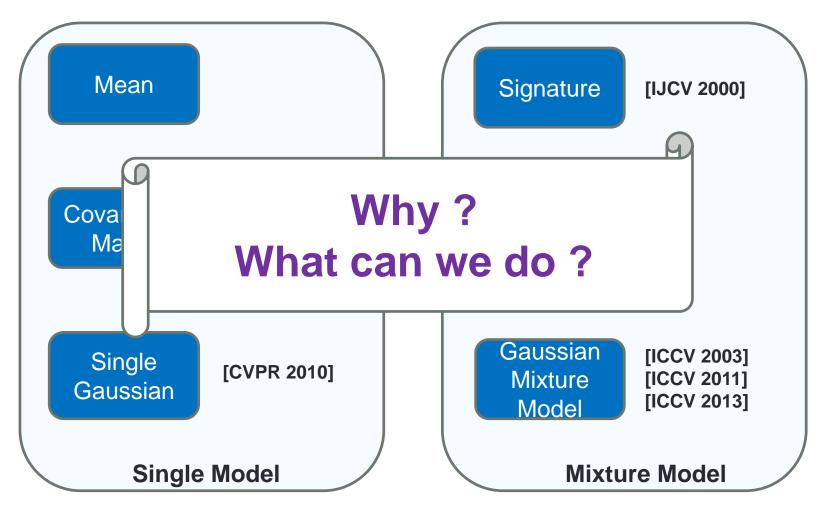
Usage of Codebook-free Model





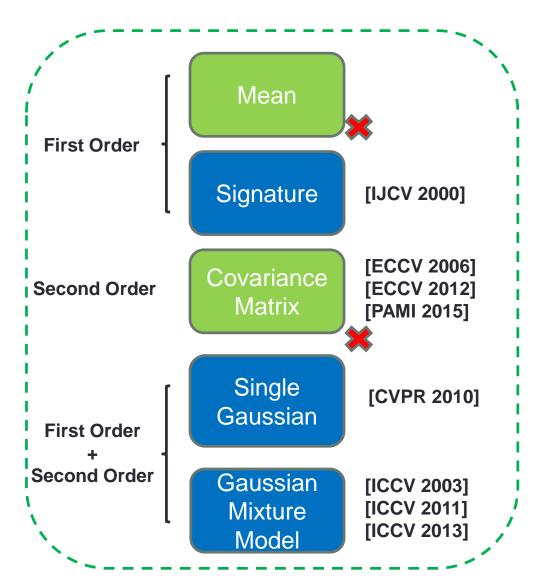
Above models showed underperformances than BoW model for image classification.

Codebook-free Models



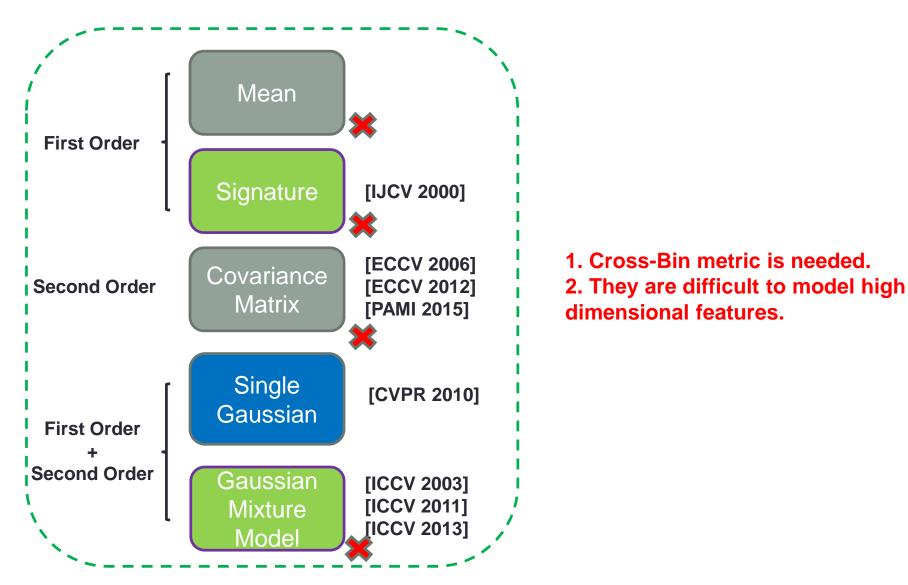
Above models showed underperformances than BoW model for image classification.

Selection of Codebook-free Model



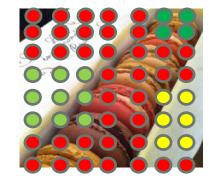
Combination of first and second order brings better performances.

Selection of Codebook-free Model



Codebook-free Single Gaussian for Image Modelling

Image



⇔

Features

Gaussian

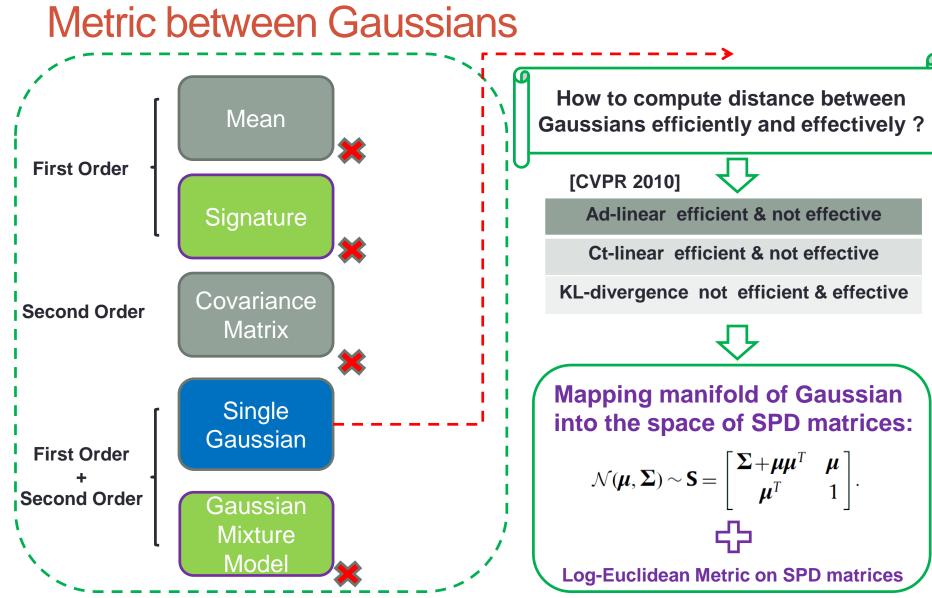
Outline

Modeling Methods in Image Classification

> Towards Effective Codebook-free Model

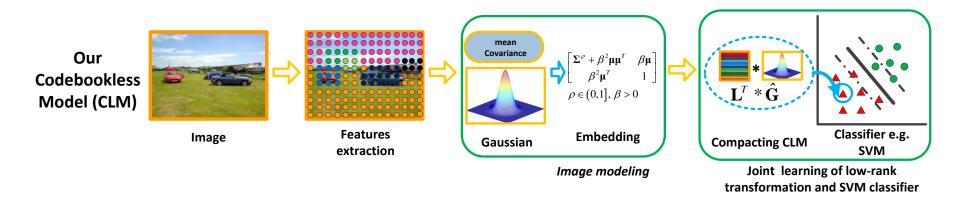
Robust Approximate Infinite Dimensional Gaussian

Future Work and Conclusion



Peihua Li, Qilong Wang, Lei Zhang: A Novel Earth Mover's Distance Methodology for Image Matching with Gaussian Mixture Models. ICCV, 2013.

Pipeline of Proposed Method



1. Local (hand-crafted) features extraction.

- 2. Computing Gaussian and matching them with Embedding
- 3. Compacting CLM

Comparison with the FV [IJCV13]

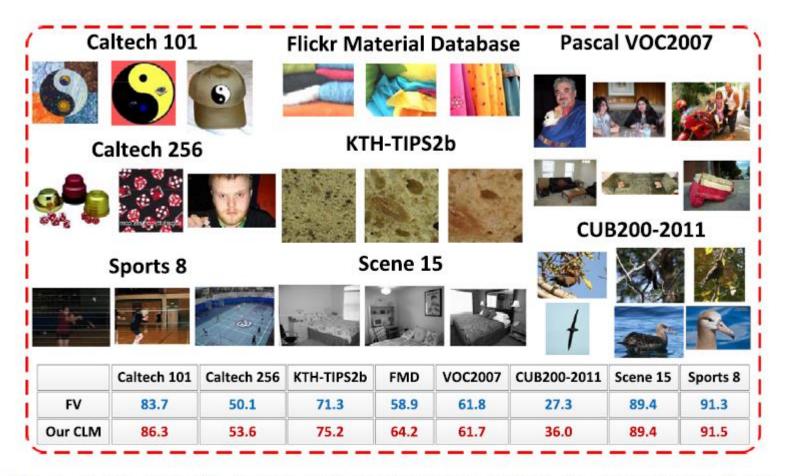


Fig. 1. Some example images and accuracy comparison (in %) between Fisher vector (FV) and our codebookless model (CLM) on various image databases.

Effect of Local Features

	Caltech101	Caltech256	VOC2007	CUB200- 2011	FMD	KTH-TIPS- 2b	Scene15	Sports8
FV+ SIFT	80.87+0.3	47.47+0.1	61.8	25.8	58.37+1.0	69.37+1.0	88.17+0.2	91.37+1.3
FV+ eSIFT	83.77+0.3	50.17+0.3	60.8	27.3	58.97+1.7	71.37+3.1	89.47+0.2	90.47+1.2
CLM + SIFT	84.97+0.1	48.97+0.2	55.8	18.6	51.67+1.2	71.87+3.1	88.17+0.4	88.87+1.0
CLM + eSIFT	86.37+0.3	53.67+0.2	60.4	28.1	57.77+1.6	75.27+2.6	89.47+0.4	91.57+1.2
CLM + L ² ECM	82.57+0.3	48.67+0.3	56.6	19.1	62.47+1.5	72.27+3.3	88.37+0.6	88.37+1.3
CLM + eL ² ECM	84.77+0.2	53.27+0.1	61.7	28.6	64.27+1.0	73.67+2.6	89.27+0.5	90.77+0.7

Peihua Li, Qilong Wang, Local log-Euclidean covariance matrix (L²ECM) for image representation and its applications, in ECCV, 2012.

Comparison with counterparts

	Scene15	Sports8
GG (ad-linear) [CVPR2010]	79.8	80.2
GG (ct-linear) [CVPR2010]	82.3	82.9
GG (KL-kernel) [CVPR2010]	86.1	84.4
CLM (SIFT)	88.1	88.8

Metric between Gaussian models is very important.

Some key findings

Our work has clearly shown that single Gaussian is a very competitive alternative to the mainstream BoW model.

Comparison with BoW model, our method is more efficient with no requirement of dictionary. Meanwhile, it avoid aforementioned limitations of BoW model.

> Our method is more suit for texture or material images.

More powerful local descriptors can bring more improvement for our method than BoF model.

Outline

Modeling Methods in Image Classification

> Towards Effective Codebook-free Model

>Robust Approximate Infinite Dimensional Gaussian

Future Work and Conclusion

More Powerful Local Features

> Features from deep Convolutional Neural Network.

- □Fully-connected layer
 - MOP-CNN [ECCV 2014], SCFVC [NIPS2014], ...
- Convolutional layer
 - SPP-Net [ECCV 2014], FV-CNN [CVPR2015], ...

 Infinite dimensional descriptors can provide richer and more discriminative information than their low dimensional counterparts.
Mapping local features into (approximated) RKHS

• [CVPR2014], [NIPS2014], [ICASSP2015]

Approximate Infinite Dimensional Gaussian

Goal:

Computing infinite dimensional Gaussian with the features from deep Convolutional Neural Network.

Approximate Infinite Dimensional Gaussian

Goal:

Computing infinite dimensional Gaussian with the features from deep Convolutional Neural Network.

Methods	Descriptor	Kernels or mappings	Estimator	Metric	Linear SVM ?
Zhou et al. 53	Gaussian	RBF kernel (no explicit mapping)	Ledoit-Wolf estimator	Probabilistic distances in ${\cal H}$	No
Harandi et al. [23]	Covariance	RBF kernel (no explicit mapping)	Ledoit-Wolf estimator	Bregman Divergences in ${\cal H}$	No
Log-HS [20]	Covariance	RBF kernel (no explicit mapping)	Ledoit-Wolf estimator	Log-Hilbert-Schmidt metric	No
Faraki <i>et al.</i> [17]	Covariance	${Random Fourier transform \\ Nyström method}$ for RBF kernel	Ledoit-Wolf estimator	Log-Euclidean metric	Yes
RAID-G (Ours)	Gaussian	Explicit feature maps of ${ Hellinger's kernel \\ \mathcal{X}^2 kernel }$	Regularized MLE with von Neumann divergence	Gaussian Embedding and vectorization	Yes

Table 1. Comparison of different infinite dimensional image descriptors.

Approximate Infinite Dimensional Gaussian

Goal:

Computing infinite dimensional Gaussian with the features from deep Convolutional Neural Network.

		-	-	-	
Methods	Descriptor	Kernels or mappings	Estimator	Metric	Linear SVM ?
Zhou et al. 53	Gaussian	RBF kernel (no explicit mapping)	Ledoit-Wolf estimator	Probabilistic distances in ${\cal H}$	No
Harandi et al. [23]	Covariance	RBF kernel (no explicit mapping)	Ledoit-Wolf estimator	Bregman Divergences in ${\cal H}$	No
Log-HS [20]	Covariance	RBF kernel (no explicit mapping)	Ledoit-Wolf estimator	Log-Hilbert-Schmidt metric	No
Faraki <i>et al.</i> [17]	Covariance	${Random Fourier transform \\ Nyström method}$ for RBF kernel	Ledoit-Wolf estimator	Log-Euclidean metric	Yes
RAID-G (Ours)	Gaussian	Explicit feature maps of ${ Hellinger's kernel \\ \mathcal{X}^2 kernel }$	Regularized MLE with von Neumann divergence	Gaussian Embedding and vectorization	Yes

Table 1. Comparison of different infinite dimensional image descriptors.

Our
solution:
$$\begin{aligned} & \begin{array}{c} & \begin{array}{c} \text{Two explicit feature mappings:} \\ (1) \\ \phi_{Hel}(\mathbf{x}_k) = \sqrt{\mathbf{x}_k} \end{array} \\ & \begin{array}{c} & (2) \\ \phi_{Chi}(\mathbf{x}_k) = \sqrt{\mathbf{x}_k} \\ & \sqrt{2L \operatorname{sech}(L\pi)} \operatorname{sin}(L \log(\mathbf{x}_k)) \end{array} \end{array} \\ & \end{array} \\ \end{aligned}$$

Robust Estimation of Approximate Infinite Dimensional Gaussian

Problem:

We face to estimation of covariance in high dimensional problems with a small number of samples. It is well known that conventional Maximum Likelihood Estimation (MLE) is not robust to this condition.

Robust Estimation of Approximate Infinite Dimensional Gaussian

Problem:

We face to estimation of covariance in high dimensional problems with a small number of samples. It is well known that conventional Maximum Likelihood Estimation (MLE) is not robust to this condition.

$$p(\mathbf{x}) = |2\pi \mathbf{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Robust Estimation of Approximate Infinite Dimensional Gaussian

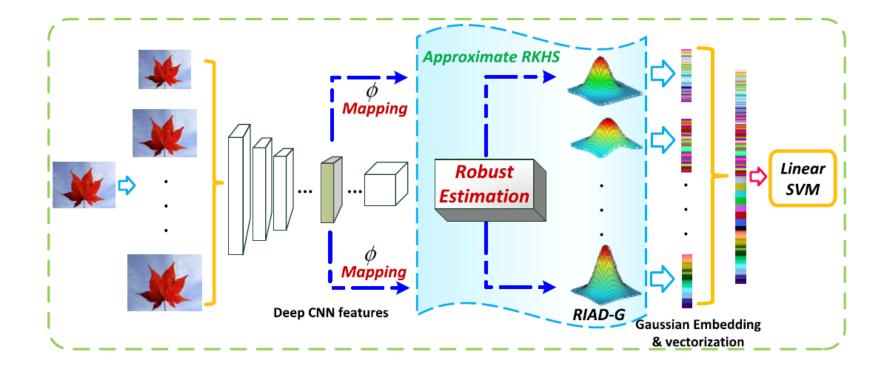
Problem:

We face to estimation of covariance in high dimensional problems with a small number of samples. It is well known that conventional Maximum Likelihood Estimation (MLE) is not robust to this condition.

$$p(\mathbf{x}) = |2\pi \mathbf{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

$$\begin{split} \min_{\widehat{\boldsymbol{\Sigma}}} \log |\widehat{\boldsymbol{\Sigma}}| + \operatorname{tr}(\widehat{\boldsymbol{\Sigma}}^{-1}\widehat{\mathbf{S}}) + \alpha D_{\mathrm{vN}}(\mathbf{I},\widehat{\boldsymbol{\Sigma}}) \\ \text{where } D_{\mathrm{vN}}(\mathbf{A}, \mathbf{B}) = \operatorname{tr}(\mathbf{A}(\log(\mathbf{A}) - \log(\mathbf{B})) - \mathbf{A} + \mathbf{B}) \\ \text{is the von Neumann divergence between matrices.} \\ \widehat{\boldsymbol{\Sigma}} = \widehat{\mathbf{U}}\operatorname{diag}(\lambda_k)\widehat{\mathbf{U}}^T, \\ \widehat{\boldsymbol{\Sigma}} = \widehat{\mathbf{U}}\operatorname{diag}(\lambda_k)\widehat{\mathbf{U}}^T, \\ \lambda_k = \sqrt{\left(\frac{1-\alpha}{2\alpha}\right)^2 + \frac{\delta_k}{\alpha}} - \frac{1-\alpha}{2\alpha}} \widehat{\mathbf{S}} = \widehat{\mathbf{U}}\operatorname{diag}(\delta_k)\widehat{\mathbf{U}}^T \\ \mathbf{VN-MLE} \end{split}$$

Connection with Other Infinite Dimensional Models



Material Recognition

(e) Open Surfaces

Results on Material Recognition

The accuracy (%) of various methods on five material benchmarks. *: The score level fusion is used to combine FC and FV-CNN.

Methods	FMD	UIUC Material	KTH-TIPS 2b	DTD	Open Surfaces
COV-CNN	80.2 ± 1.1	80.5 ± 3.6	76.7 ± 2.8	70.1 ± 1.2	55.0
Gau-CNN	81.3 ± 1.4	81.7 ± 2.9	77.5 ± 2.4	70.5 ± 1.5	55.7
RoG-CNN	83.6 ± 1.6	84.5 ± 1.8	79.5 ± 1.5	73.9 ± 1.1	58.9
RAID-G-CNN-Hel	84.4 ± 1.3	85.7 ± 2.1	80.4 ± 1.2	75.8 ± 1.4	60.3
RAID-G-CNN-Chi	84.9 ± 1.4	86.3 ± 2.9	81.3 ± 1.6	76.4 ± 1.1	61.1
FC [12]	77.4 ± 1.8	75.9 ± 2.3	75.4 ± 1.5	62.9 ± 0.8	43.4
FV-CNN [12]	79.8 ± 1.8	80.5 ± 2.7	81.8 ± 2.5	72.3 ± 1.0	59.5
FC + FV-CNN* [12]	82.4 ± 1.5	82.6 ± 2.1	81.1 ± 2.4	74.7 ± 1.0	60.9
State-of-the-art I	60.6 [42]	60.1 [18]	70.7 ± 1.6 [16]	61.2 ± 1.0 [40]	39.8 40
State-of-the-art II	66.5 ± 1.5 [4]	66.6 ± 3.1 [22]	77.3 ± 2.3 [11]	66.7 ± 0.9 [11]	-

VGG-VD-16 without fine-tuning

- Gaussian descriptors > covariance descriptors.
- > The proposed vN-MLE estimator can achieve big performance improvements.
- **Gaussian descriptors constructed in RKHS > those constructed in the original space.**
- > RAID-G outperforms FV-CNN and achieves state-of-the-art performances.

Robust Covariance Estimation

Comparison with various robust estimators on FMD and UIUC material databases.

Methods	FMD	UIUC Material
Gau-CNN (LW)	81.3 ± 1.4	81.7 ± 2.9
Gau-CNN (Stein)	81.9 ± 0.7	82.2 ± 1.8
Gau-CNN (MMSE)	81.2 ± 1.2	80.9 ± 1.9
Gau-CNN (EL-SP)	81.5 ± 1.6	82.0 ± 2.3
RoG-CNN (vN-MLE)	83.6 ± 1.6	84.5 ± 1.8
Gau-CNN-Chi (LW)	83.1 ± 0.9	81.6 ± 4.1
Gau-CNN-Chi (Stein)	83.2 ± 0.8	83.6 ± 3.0
Gau-CNN-Chi (MMSE)	83.1 ± 0.8	82.0 ± 4.3
Gau-CNN-Chi (EL-SP)	83.2 ± 1.1	82.1 ± 3.1
RAID-G-CNN-Chi (vN-MLE)	84.9 ± 1.4	86.3 ± 2.9

The vN-MLE is superior to the competing methods in the very high dimensional setting.

Explicit Feature Mappings

Effects of various feature mappings on FMD and UIUC material database.

Methods	FMD	UIUC Material
RAID-G-CNN-rFt (1x)	79.7 ± 1.6	80.6 ± 2.2
RAID-G-CNN-rFt (3x)	80.6 ± 2.3	81.8 ± 2.7
RAID-G-CNN-Nyström (1x)	82.2 ± 2.2	83.3 ± 3.1
RAID-G-CNN-Nyström (3x)	82.8 ± 1.9	84.0 ± 2.7
RAID-G-CNN-Hel	84.4 ± 1.3	85.7 ± 2.1
RAID-G-CNN-Chi	84.9 ± 1.4	86.3 ± 2.9
CDL_{rFt} [17]	-	47.4 ± 3.1
$CDL_{Nyström}$ [17]	-	46.3 ± 2.6

The introduced feature mappings are not only efficient but effective in very high dimensional setting.

Infinite dimensional descriptors

Methods	Accuracy (in %)
RAID-G-Hel (23D Handcrafted features)	78.8 ± 4.8
RAID-G-Chi (23D Handcrafted features)	78.2 ± 4.7
RAID-G-CNN-Hel	89.0 ± 5.4
RAID-G-CNN-Chi	89.3 ± 4.5
Log-E RBF (baseline) (23D Handcrafted features)	74.1 ± 7.4
Harandi et al. [23] (23D Handcrafted features)	80.1 ± 4.6
Log-HS [20] (23D Handcrafted features)	81.9 ± 3.3

- When hand-crafted features are used, the methods in [23, 20] are slightly better than RAID-G.
- When employing high dimensional deep CNN features, RAID-G achieves more than 7% improvements over infinite dimensional covariance descriptors [23, 20], where CNN features cannot be used due to unaffordable cost.

Application to other tasks

VGG-VD-16 without fine-tuning

	CUB200-2011	I	ndoor67		SUN397
RIAD-G	82.1	8	2.8		67.1
Calledon Comp	G 担約	アの一方榜			
2015阿里巴巴大规模图像搜索 ALISC:Alibaba Large-scale Image Sea		第2赛	季排行榜 第1赛	季排行榜	
参赛队伍 DLUT_VLG 参赛成员		排名	参赛者	所在组织	评分
曾辉 孙伟健	王旗龙	1	VIPL-3L R	中国科学院	0.4929
Hui Zeng Weijian Sun	Qilong Wang	2	DLUT_VLG 🔗	大连理工大学	0.4916
导师:李培华		3	Choroi	复旦大学	0.4554
在全球843支队伍中脱颖而出,荣获二等		4	Hitsz_BCC 🖉	哈尔滨工业大学	0.4195
第二名	i i	5	ToSsBoY	复旦大学	0.3801
		6	KNIGHT-BUPT	北京邮电大学	0.3720
阿里巴巴图像大赛组委会 2016年1月		7	tjucs_lemon <i>®</i> ,	天津大学	0.3579
		8	nus_next R	哈尔滨工业大学	0.3535

Outline

Modeling Methods in Image Classification

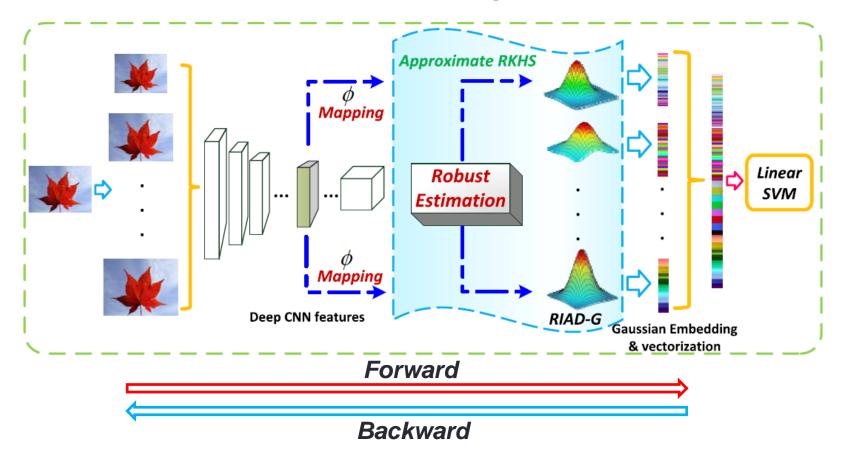
> Towards Effective Codebook-free Model

Robust Approximate Infinite Dimensional Gaussian

Future Work and Conclusion

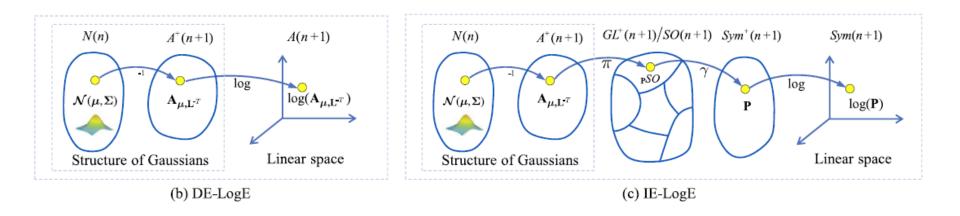
Future work

An end-to-end learning architecture



Future work

The better usage and understanding of manifold structure of Gaussian



We show, for the first time to our knowledge, that the space of Gaussians can be equipped with a Lie group structure by defining a multiplication operation on this manifold.

Peihua Li, Qilong Wang, Hui Zeng and Lei Zhang, Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to Image Classification, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2016 (in press).

Summary

- > The codebook-free single Gaussian is a very competitive image model for classification, and is more sensitive to powerful local features.
- Follow the similar pipeline, we proposed RIAD-G, a reinforced codebook-free single Gaussian model, with considering robust estimation of very high dimensional covariance matrix.
- > Now, we are trying to conduct a end-to-end learning architecture for RIAD-G to further improvement.
- > The better usage of manifold structure of Gaussian and more general model are mainly directions in our future work.

Related References

- Qilong Wang, Peihua Li, Wangmeng Zuo, and Lei Zhang. RAID-G: Robust Estimation of Approximate Infinite Dimensional Gaussian with Application to Material Recognition, In CVPR, 2016 (accepted).
- Peihua Li, Qilong Wang, Hui Zeng and Lei Zhang, Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to Image Classification, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2016 (in press).
- > Qilong Wang, Peihua Li, Wangmeng Zuo, and Lei Zhang. Towards effective codebookless model for image classification, Pattern Recognition, 2016 (in press).
- Peihua Li, Qilong Wang, Local log-Euclidean covariance matrix (L²ECM) for image representation and its applications, in ECCV, 2012.
- Peihua Li, Qilong Wang, Lei Zhang: A Novel Earth Mover's Distance Methodology for Image Matching with Gaussian Mixture Models, in ICCV, 2013.

THANKS & QUESTIONS?

The codes can be downloaded at http://ice.dlut.edu.cn/PeihuaLi/