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纲要 

• 图像中的物体检测 

– 简要介绍 

– 基于多个上下文的框和物体关系学
习  arXiv:1512.02736 

– 考虑物体长尾性质的分层级联学习
arXiv:1601.05150 

– 框生成和框分类多级级联学习 

• 视频中的物体检测 

http://arxiv.org/abs/1512.02736
http://arxiv.org/abs/1601.05150


物体检测 

• 200 类，~56万训练图片，～5万测试图片 
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基于多个上下文的框和物体关系学习 

• 生成框 

– 生成可能有物体的
框 

• 分类 

– 判断这些区域是属
于哪一类 

• 不同区域得到的视
觉信息不同 
– 这些不同被忽视 

– 利用这些信息 



基于多个上下文的框和物体关系学习 

• 1000 类ImageNet classification 数据预训练 
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基于多个上下文的框和物体关系学习 

• 学习框与真实物体之间的位置关系 
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多上下文的框 

• 框是否正确的歧义性 

• 上下文帮助消除歧义 



实验结果 

 

GoogLeNet [1] +上下文 +框与物体关系学习 
+更好的预训练[2] 

+bounding box regression 

39.9 42.1 46.3 49.1 

[2] W. Ouyang, P. Luo, X. Zeng, S. Qiu, Y. Tian, H. Li, S. Yang, Z. Wang, Y. Xiong, C. Qian, 
et al. Deepid-net: deformable deep convolutional neural networks for object 
detection. CVPR 15 

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, 
and A. Rabinovich. Going deeper with convolutions. CVPR, 2015. 

Code and model available on 
www.ee.cuhk.edu.hk/~wlouyang/projects/imagenetDeepId/index.html 



纲要 

• 图像中的物体检测 

– 基于多个上下文的框和物体关系学
习  arXiv:1512.02736 

– 考虑物体长尾性质的多层级分组级联学习
arXiv:1601.05150 

– Region proposal和框多级级联学习 

• 视频中的物体检测 

http://arxiv.org/abs/1512.02736
http://arxiv.org/abs/1601.05150


物体检测中的长尾性质 

• 在物体检测中，不同类样本数目呈现长尾
性质 

• ImageNet val1:  

– 人(6,007)  狗(2,142) 鸟(1643) 

– 狮子(19)  蜈蚣(19)  仓鼠(16). 
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多层次分组学习 

• 物体视觉信息不同 

• 物体种类太多时，深
度学习在trade-off 

• 将相似类别分组 

• 利用相似性做多层级
联(cascasde)以提速 



实验结果 

 

层级数 1 2 3 4 新结果 

分组数 1 4 7 18 7 

每组内平均类别数目 200 50 29 11 29 

级联后每组所需考虑的框数 136 25.8 15.2 5.6 

mAP 40.3 41.3 42.5 45 56 

Code and model available on 
www.ee.cuhk.edu.hk/˜wlouyang/projects/imagenetDeepId/index.html 
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物体检测两步 

• 生成框(proposal generation/region proposal) 

• 对框进行分类 (proposal classification) 

Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal 
networks." NIPS. 2015. 



物体检测两步级联 

• 生成框(proposal generation/region proposal) 

– 对生成框的深度模型进行级联 

Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal 
networks." NIPS. 2015. 



生成框质量实验结果 

• Selective search 2000 框 

Setting Number of proposals Recall (%) 

Selective Search 2000 92.09 

RPN-1 [1] 300 89.94 

RPN-2 300 91.83 

RPN+FRCN  300 92.38 

SS+RPN+FRCN 300 94.13 

[1] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal 
networks." NIPS. 2015. 



物体检测两步级联 

• 生成框(proposal generation/region proposal) 

• 框分类 (proposal classification) 

– 对框分类的深度模型进行级联 

 



物体检测实验结果 

 Setting mAP(%) 

No cascade 65.0 

Single-class re-score 63.5 

Multi-class re-score 68.0 

Setting mAP(%) 

GoogLeNet _BN 47.0 

Cascade GoogLeNet BN 48.5 

Improvement +1.5 

ILSVRC14 val2  

Results on VOC07  



总结 

• 设计深度学习方法使得模型更有效 

• 思考物体检测存在的问题 

– 框的标签单一，学习框与物体间的关系 

– 长尾，分层级联学习 

– 框生成和框分类的不匹配，多层级联，磨合不
匹配 

– 使预训练(pretraining)和微调(fine-tuning)匹配[a] 

– 使得深度模型学习物体形变 [a] 

[a] Ouyang, W., Wang, X., Zeng, X., Qiu, S., Luo, P., Tian, Y., ... & Tang, X. Deepid-net: 
Deformable deep convolutional neural networks for object detection. In CVPR 2015. 
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High-confidence Tracking

• Obtain detection results from still-image detectors

• Choose high-confidence detections as starting points (anchors) for tracking

• Obtain tubelets, which are bounding box sequences generated from 
tracking algorithms [1]

[1] Wang, Lijun et al. Visual Tracking with Fully Convolutional Networks. ICCV 2015
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Spatial Max-pooling: Why?

• The detection scores on the tracked tubelets are not satisfactory

• Boxes from tracked tubelets and those from still-image detection 
have different statistics

• Tracked box locations are not optimal due to tracking failures

• Neighboring high-confidence detections are utilized to improve 
tubelet detection scores, which is called spatial max-pooling
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Spatial Max-pooling

• Still-image detection results that have large overlaps with tubelet 
boxes are chosen for each tubelet

• Only detections with maximum detection scores are left after 
spatial max-pooling

• Use the Kalman Filter to smooth the bounding box locations.
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Temporal Re-scoring
• Tubelet Classification. Classify tubelets based on statistics of 

detection scores (mean, median, top-k). A linear classifier is learnt 
based on the statistics. 

• Tubelet Re-scoring. Map detection scores of positive tubelets to 
[0.5, 1], negative ones to [0, 0.5].

Negative tubelets

Positive tubelets
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Still-image Detection: Limitation II
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Still-image Detection: Limitation II
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Multi-context Suppression and Motion Guided Propagation
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Multi-context Suppression (MCS)

• Sort all detection scores of all proposals in a video in descending 
order

• The classes of the high rankings are denoted as the confident 
classes

• The scores of classes with low rankings are suppressed, while the 
scores of confident classes remain unchanged
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Motion Guided Propagation (MGP)



Frame t

Motion Guided Propagation (MGP)



Frame t

Motion Guided Propagation (MGP)



Frame tFrame t-1 Frame t+1

Motion Guided Propagation (MGP)



Frame tFrame t-1 Frame t+1

Motion Guided Propagation (MGP)



Frame tFrame t-1 Frame t+1

Motion Guided Propagation (MGP)

• In each frame, some objects are not found by detector. However, detections on 
adjacent frames are complementary to each other.



Frame tFrame t-1 Frame t+1

Motion Guided Propagation (MGP)

• In each frame, some objects are not found by detector. However, detections on 
adjacent frames are complementary to each other.

• Detections are propagated to adjacent frames. Optical flow is used for guiding the 
propagation.



Frame tFrame t-1 Frame t+1

Motion Guided Propagation (MGP)

• In each frame, some objects are not found by detector. However, detections on 
adjacent frames are complementary to each other.

• Detections are propagated to adjacent frames. Optical flow is used for guiding the 
propagation.



Frame tFrame t-1 Frame t+1

Motion Guided Propagation (MGP)

• In each frame, some objects are not found by detector. However, detections on 
adjacent frames are complementary to each other.

• Detections are propagated to adjacent frames. Optical flow is used for guiding the 
propagation.

• Propagation results in redundant boxes, which can be easily handled by non-
maximum suppression (NMS)
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• Two groups of proposals: 1) Region Proposal Networks (RPN), 2) 
Selective Search + EdgeBox. Given a group of proposals, their 
detection scores can be obtained by averaging several models.

Score 
Average



Model Combination

• Two groups of proposals: 1) Region Proposal Networks (RPN), 2) 
Selective Search + EdgeBox. Given a group of proposals, their 
detection scores can be obtained by averaging several models.

• NMS is used for combining multiple groups of proposals

Score 
Average

Proposal 
Combination



Model Combination

• Two groups of proposals: 1) Region Proposal Networks (RPN), 2) 
Selective Search + EdgeBox. Given a group of proposals, their 
detection scores can be obtained by averaging several models.

• NMS is used for combining multiple groups of proposals

Score 
Average

Proposal 
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Non-maximum 
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Proposed Framework
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Component Analysis



Training Data Configuration
CNN Training Data

DET:VID Ratio 1:0 3:1 2:1 1:1 1:3

MeanAP / % 49.8 56.9 58.2 57.6 57.1

SVM Training Data
DET Positive ✅ ✅ ❌ ❌ ❌ ✅

VID Positive ❌ ✅ ✅ ✅ ✅ ✅

DET Negative ✅ ✅ ✅ ✅ ❌ ✅

VID Negative ❌ ❌ ❌ ✅ ✅ ✅

MeanAP / % 49.8 47.1 35.8 51.6 52.3 53.7
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Results
Data Model Still-

image
MCS+MGP
+Rescoring

Model 
Combine

Test Set 
(official 
results)

Rank in 
ILSVRC 

2015
#win

Provided
CRAFT [1] 67.7 73.6

73.8 67.8 #1 28/30DeepID-net 
[2,3,4] 65.8 72.5

Additional
CRAFT [1] 69.5 75.0

77.0 69.7 #2 11/30
DeepID-net 

[2,3,4] 70.7 75.4

Validation set Test set
[1] J. Yan, et al. CRAFT Objects from Images, axiv preprint.
[2] W. Ouyang, et al. Deepid-net: Deformable deep convolutional neural networks for object detection. CVPR, 2015. 
[3] X. Zeng, et al. Window-Object Relationship Guided Representation Learning for Generic Object Detections , axiv preprint. 
[4] W. Ouyang, et al. Factors in Finetuning Deep Model for object detection, axiv preprint.



Results



Results



Results



Results



Results



Results



Results



Results



Results



Results



Thank You!



Questions?


