

Learning effective deep models for object detection and using Multi-**Context Cues for video object** detection Wanli Ouyang (欧阳万里) 香港中文大学

我们团队在ImageNet Challenge

Task	Track	Rank
CLS+LOC	Additional	3
DET	Provided	3
DET	Additional	2
VID	Provided	1
VID	Additional	2

Wanli Ouyang Hongsheng Li Xiaogang Wang

Junjie Yan

Xingyu Zeng

Kai Kang

Hongyang Li

Zhe Wang

Bin Yang

Cong Zhang

Tong Xiao

Ruohui Wang

Yubin Deng

Xuanyi Dong

Buyu Li

• 图像中的物体检测

• 视频中的物体检测

- 图像中的物体检测
 - 简要介绍
 - 基于多个上下文的框和物体关系学 习 <u>arXiv:1512.02736</u>
 - 考虑物体长尾性质的分层级联学习 arXiv:1601.05150
 - 框生成和框分类多级级联学习
- 视频中的物体检测

物体检测

• 200 类,~56万训练图片,~5万测试图片

person hammer flower pot power drill

物体检测基本步骤

- 生成框
 - 生成可能有物体的 框

物体检测基本步骤

- 生成框
 - 生成可能有物体的 框
- 分类
 - 判断这些区域是属 于哪一类

物体检测基本步骤

- 生成框
 - 生成可能有物体的 框
- 分类
 - 判断这些区域是属 于哪一类

• 图像中的物体检测

- 简要介绍

- 基于多个上下文的框和物体关系学 习 <u>arXiv:1512.02736</u>

- 考虑物体长尾性质的分层级联学习 arXiv:1601.05150

- 框生成和框分类多级级联学习

• 视频中的物体检测

- 生成框
 - 生成可能有物体的 框
- 分类
 - 判断这些区域是属 于哪一类
- 不同区域得到的视 觉信息不同

• 生成框

- 生成可能有物体的 框

- 分类
 - 判断这些区域是属 于哪一类
- 不同区域得到的视觉信息不同

- 生成框
 - 生成可能有物体的 框
- 分类
 - 判断这些区域是属 于哪一类
- 不同区域得到的视觉信息不同
 一这些不同被忽视
 利用这些信息

• 1000 类ImageNet classification 数据预训练

基于多个上下文的框和物体关系学习

• 学习物体检测(分类框)

基于多个上下文的框和物体关系学习

• 学习框与真实物体之间的位置关系

• 框与真实框(ground truth)之间的关系是否正确的歧义性

多上下文的框

• 框是否正确的歧义性

多上下文的框

• 框是否正确的歧义性

多上下文的框

• 框是否正确的歧义性• 上下文帮助消除歧义

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. CVPR, 2015.

[2] W. Ouyang, P. Luo, X. Zeng, S. Qiu, Y. Tian, H. Li, S. Yang, Z. Wang, Y. Xiong, C. Qian, et al. Deepid-net: deformable deep convolutional neural networks for object detection. CVPR 15

Code and model available on www.ee.cuhk.edu.hk/~wlouyang/projects/imagenetDeepId/index.html

纲要

- 图像中的物体检测
 - 基于多个上下文的框和物体关系学 习 <u>arXiv:1512.02736</u>
 - 考虑物体长尾性质的多层级分组级联学习 arXiv:1601.05150
 - Region proposal和框多级级联学习
- 视频中的物体检测

物体检测中的长尾性质

- 在物体检测中,不同类样本数目呈现长尾
 性质
- ImageNet val1:
 - -人(6,007) 狗(2,142) 鸟(1643)
 - -狮子(19) 蜈蚣(19) 仓鼠(16).

物体检测中的长尾性质

- 在物体检测中,不同类样本数目呈现长尾
 性质
- ImageNet val1:
 - -人(6,007)狗(2,142)鸟(1643)
 - -狮子(19) 蜈蚣(19) 仓鼠(16).

分组学习

- 物体视觉信息不同
- 物体种类太多时,深 度学习在trade-off

分组学习

- 物体视觉信息不同
- 物体种类太多时,深 度学习在trade-off
- 将相似类别分组学习

多层次分组学习

- 物体视觉信息不同
- 物体种类太多时,深 度学习在trade-off
- 将相似类别分组学习

多层次分组学习

- 物体视觉信息不同
- 物体种类太多时,深 度学习在trade-off
- 将相似类别分组
- •利用相似性做多层级联(cascasde)以提速

层级数	1	2	3	4	新结果
分组数	1	4	7	18	7
每组内平均类别数目	200	50	29	11	29
级联后每组所需考虑的框数	136	25.8	15.2	5.6	
mAP	40.3	41.3	42.5	45	56

Code and model available on

www.ee.cuhk.edu.hk/~wlouyang/projects/imagenetDeepId/index.html

Backpack

Squirrel

Pitcher

- 图像中的物体检测
 - 基于多个上下文的框和物体关系学 *arXiv:1512.02736*
 考虑物体长尾性质的分层级联学习
 arXiv:1601.05150
 - 框生成和框分类多级级联学习
- 视频中的物体检测

物体检测两步

生成框(proposal generation/region proposal)
对框进行分类 (proposal classification)

Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." NIPS. 2015.

物体检测两步级联

生成框(proposal generation/region proposal)
 一对生成框的深度模型进行级联

Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." NIPS. 2015.

生成框质量实验结果

• Selective search 2000 框

Setting	Number of proposals	Recall (%)
Selective Search	2000	92.09
RPN-1 [1]	300	89.94
RPN-2	300	91.83
RPN+FRCN	300	92.38
SS+RPN+FRCN	300	94.13

[1] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." NIPS. 2015.

物体检测两步级联

- 生成框(proposal generation/region proposal)
- 框分类 (proposal classification)

- 对框分类的深度模型进行级联

Results on VOC07

Setting	mAP(%)
No cascade	65.0
Single-class re-score	63.5
Multi-class re-score	68.0

Setting	mAP(%)
GoogLeNet _BN	47.0
Cascade GoogLeNet BN	48.5
Improvement	+1.5

ILSVRC14 val2
总结

- 设计深度学习方法使得模型更有效
- 思考物体检测存在的问题
 - 框的标签单一, 学习框与物体间的关系
 - 长尾, 分层级联学习
 - 框生成和框分类的不匹配, 多层级联, 磨合不 匹配
 - 使预训练(pretraining)和微调(fine-tuning)匹配[a]
 使得深度模型学习物体形变 [a]

[a] Ouyang, W., Wang, X., Zeng, X., Qiu, S., Luo, P., Tian, Y., ... & Tang, X. Deepid-net: Deformable deep convolutional neural networks for object detection. In *CVPR* 2015.

Multimedia Laboratory

Object Detection in Videos with Tubelets and Multi-context Cues CUvideo Team The Chinese University of Hong Kong

Wanli Ouyang

Kai Kang

Hongsheng Li

Bin Yang

Zhe Wang

Junjie Yan

Xingyu Zeng

Tong Xiao

Cong Zhang

Ruohui Wang

Xiaogang Wang

Proposed Framework

Still-image Detection

Proposed Framework

Still-image Detection

Still-image Detection

ILSVRC Detection #1 Performance

Still-image Detection

ILSVRC Detection #1 Performance

Still-image Detection: Limitation I Large Temporal Variations

Time

Still-image Detection: Limitation I Large Temporal Variations

Time

Still-image Detection: Limitation I Large Temporal Variations

Time

Solution - Tubelets

Still-image Detection

Model Combination

Temporal Tubelet Re-scoring Multi-context Suppression and Motion Guided Propagation

Proposed Framework

Still-image Detection

Proposed Framework

Temporal Tubelet Re-scoring

Obtain detection results from still-image detectors

Obtain detection results from still-image detectors lacksquare

- Obtain detection results from still-image detectors

Choose high-confidence detections as starting points (anchors) for tracking

- Obtain detection results from still-image detectors

Choose high-confidence detections as starting points (anchors) for tracking

- Obtain detection results from still-image detectors
- tracking algorithms [1]

[1] Wang, Lijun et al. Visual Tracking with Fully Convolutional Networks. ICCV 2015

Choose high-confidence detections as starting points (anchors) for tracking

Obtain tubelets, which are bounding box sequences generated from

The detection scores on the tracked tubelets are not satisfactory

- - have different statistics

• The detection scores on the tracked tubelets are not satisfactory

Boxes from tracked tubelets and those from still-image detection

- The detection scores on the tracked tubelets are not satisfactory
 - Boxes from tracked tubelets and those from still-image detection have different statistics
 - Tracked box locations are not optimal due to tracking failures

- The detection scores on the tracked tubelets are not satisfactory
 - Boxes from tracked tubelets and those from still-image detection have different statistics
 - Tracked box locations are not optimal due to tracking failures
- Neighboring high-confidence detections are utilized to improve tubelet detection scores, which is called **spatial max-pooling**

boxes are chosen for each tubelet

Still-image detection results that have large overlaps with tubelet

boxes are chosen for each tubelet

Still-image detection results that have large overlaps with tubelet

- boxes are chosen for each tubelet
- spatial max-pooling

Still-image detection results that have large overlaps with tubelet

Only detections with maximum detection scores are left after

- **boxes** are chosen for each tubelet
- spatial max-pooling
- Use the Kalman Filter to smooth the bounding box locations.

Still-image detection results that have large overlaps with tubelet

Only detections with maximum detection scores are left after

Temporal Re-scoring

 Tubelet Classification. Classify tubelets based on statistics of based on the statistics.

Temporal Re-scoring

detection scores (mean, median, top-k). A linear classifier is learnt

 Tubelet Classification. Classify tubelets based on statistics of based on the statistics.

Temporal Re-scoring

detection scores (mean, median, top-k). A linear classifier is learnt

 Tubelet Classification. Classify tubelets based on statistics of based on the statistics.

Temporal Re-scoring

detection scores (mean, median, top-k). A linear classifier is learnt
- Tubelet Classification. Classify tubelets based on statistics of based on the statistics.
- [0.5, 1], negative ones to [0, 0.5].

Temporal Re-scoring

detection scores (mean, median, top-k). A linear classifier is learnt

Tubelet Re-scoring. Map detection scores of positive tubelets to

Temporal Tubelet Re-scoring

Ignored Context

Ignored Context

Ignored Context

red panda turtle

Ignored Context

red panda turtle

red panda turtle

red panda

red panda

red panda

red panda

Still-image Detection

Proposed Framework

Proposed Framework

Multi-context Suppression and Motion Guided Propagation

Sort all detection scores of all order

Sort all detection scores of all proposals in a video in descending

- Sort all detection scores of all order
- The classes of the high rankin classes

monkey, cat

Sort all detection scores of all proposals in a video in descending

The classes of the high rankings are denoted as the confident

- Sort all detection scores of all order
- The classes of the high rankin classes

monkey, cat others

Sort all detection scores of all proposals in a video in descending

The classes of the high rankings are denoted as the confident

- order
- The classes of the high rankings are denoted as the confident classes
- scores of confident classes remain unchanged

monkey, cat others

Sort all detection scores of all proposals in a video in descending

The scores of classes with low rankings are suppressed, while the

- order
- The classes of the high rankings are denoted as the confident classes
- scores of confident classes remain unchanged

Sort all detection scores of all proposals in a video in descending

The scores of classes with low rankings are suppressed, while the

Frame t

Frame t

Frame t-1

Frame t

Frame t+1

Frame t-1

Frame t

Frame t+1

Frame t-1

• In each frame, some objects are **not found by detector**. However, detections on adjacent frames are complementary to each other.

Frame t Frame t+1

Frame t-1

- adjacent frames are complementary to each other.
- propagation.

Frame t Frame t+1 • In each frame, some objects are **not found by detector**. However, detections on

Detections are propagated to adjacent frames. Optical flow is used for guiding the

Frame t-1

- adjacent frames are complementary to each other.
- propagation.

Frame t Frame t+1 • In each frame, some objects are **not found by detector**. However, detections on

Detections are propagated to adjacent frames. Optical flow is used for guiding the

Frame t-1

- adjacent frames are complementary to each other.
- propagation.
- Propagation results in redundant boxes, which can be easily handled by nonmaximum suppression (NMS)

Frame t Frame t+1 • In each frame, some objects are **not found by detector**. However, detections on

Detections are propagated to adjacent frames. Optical flow is used for guiding the

Still-image Detection

Proposed Framework

Proposed Framework

Model Combination

		-
		-
		-
		-
		-
		-
		-
		-
		-
		_

Nodel Combination

 Two groups of proposals: 1) Region Proposal Networks (RPN), 2) Selective Search + EdgeBox. Given a group of proposals, their detection scores can be obtained by averaging several models.

Nodel Combination

- NMS is used for combining multiple groups of proposals

Proposal Combination

 Two groups of proposals: 1) Region Proposal Networks (RPN), 2) Selective Search + EdgeBox. Given a group of proposals, their detection scores can be obtained by averaging several models.

Nodel Combination

- NMS is used for combining multiple groups of proposals

 Two groups of proposals: 1) Region Proposal Networks (RPN), 2) Selective Search + EdgeBox. Given a group of proposals, their detection scores can be obtained by averaging several models.

Still-image Detection

Multi-context Suppression and Motion Guided Propagation

Proposed Framework

Component Analysis

Training Data Configuration

CNN Training Data

DET:VID Ratio	1:0	3:1	2:1	1:1	1:3
MeanAP / %	49.8	56.9	58.2	57.6	57.1

DET Positive						
VID Positive						
DET Negative						
VID Negative						
MeanAP / %	49.8	47.1	35.8	51.6	52.3	53.7

SVM Training Data

Framework Components
CRAFT (Provided)

DeepID-Net (Provided)

Model Combine (Provided)

CRAFT (Additional)

DeepID-Net (Additional) Model Combine (Provided)

60

Framework Components

65

70

75

80

Framework Components 65 70 80 60 75

Model Combine (Provided)

Still-image Detection

Framework Components 65 60 70 75 80 **Temporal Tubelet Re-scoring**

DeepID-Net (Provided)

Model Combine (Provided)

CRAFT (Additional)

DeepID-Net (Additional) Model Combine (Provided)

Multi-context Suppression and Motion Guided Propagation

Framework Components

Data	Model	Still- image	MCS+MGP +Rescoring	Model Combine	Test Set (official results)	Rank in ILSVRC 2015	#win
Provided	CRAFT [1]	67.7	73.6	73.8	67.8	#1	28/30
	DeepID-net [2,3,4]	65.8	72.5				
Additional	CRAFT [1]	69.5	75.0	77.0	69.7	#2	11/30
	DeeplD-net [2,3,4]	70.7	75.4				

Validation set

[1] J. Yan, et al. CRAFT Objects from Images, axiv preprint.
[2] W. Ouyang, et al. Deepid-net: Deformable deep convolutional neural networks for object detection. CVPR, 2015.
[3] X. Zeng, et al. Window-Object Relationship Guided Representation Learning for Generic Object Detections, axiv preprint.
[4] W. Ouyang, et al. Factors in Finetuning Deep Model for object detection, axiv preprint.

Test set

Questions?