Learning effective deep models for
object detection and using Multi-
Context Cues for video object
detection
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[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. CVPR, 2015.

[2] W. Ouyang, P. Luo, X. Zeng, S. Qiu, Y. Tian, H. Li, S. Yang, Z. Wang, Y. Xiong, C. Qian,
et al. Deepid-net: deformable deep convolutional neural networks for object
detection. CVPR 15

Code and model available on
www.ee.cuhk.edu.hk/~wlouyang/projects/imagenetDeepld/index.html
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Ren, Shaoging, et al. "Faster R-CNN: Towards real-time object detection with region proposal

networks." NIPS. 2015.
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Ren, Shaoging, et al. "Faster R-CNN: Towards real-time object detection with region proposal
networks." NIPS. 2015.
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 Selective search 2000 HE

Selective Search
RPN-1 [1]

RPN-2
RPN+FRCN
SS+RPN+FRCN

[1] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal
networks." NIPS. 2015.
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No cascade

Results on VOCO7

Single-class re-score
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GoogleNet BN
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Still-image Model

Detection Combination

Multi-context Suppression and
Motion Guided Propagation
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* Obtain detection results from still-image detectors
* Choose high-confidence detections as starting points (anchors) for tracking

* Obtain tubelets, which are bounding box sequences generated from
tracking algorithms |1

[1] Wang, Lijun et al. Visual Tracking with Fully Convolutional Networks. |[CCV 2015
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Spatial Max-pooling: Why?

The detection scores on the tracked tubelets are not satistactory

 Boxes from tracked tubelets and those from still-image detection
have different statistics

* [Jracked box locations are not optimal due to tracking failures

Neighboring high-confidence detections are utilized to improve
tubelet detection scores, which is called spatial max-pooling
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Spatial Max-pooling

o Still-image detection results that have large overlaps with tubelet
boxes are chosen for each tubelet

* Only detections with maximum detection scores are left after
spatial max-pooling

 Use the Kalman Filter to smooth the bounding box locations.
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lemporal Re-scoring

 Tubelet Classification. Classify tubelets based on statistics of
detection scores (mean, median, top-k). A linear classifier is learnt
based on the statistics.

 Tubelet Re-scoring. Map detection scores of positive tubelets to
0.5, 1], negative ones to |0, 0.5].

|:| Negative tubelets

|:| Positive tubelets
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o Sort all detection scores of all proposals in a video in descending
order

* The classes of the high rankings are denoted as the confident
classes

 The scores of classes with low rankings are suppressed, while the
scores of confident classes remain unchanged



=== monkey, cat
1 ¥ others

o Sort all detection scores of all proposals in a video in descending
order

* The classes of the high rankings are denoted as the confident
classes

 The scores of classes with low rankings are suppressed, while the
scores of confident classes remain unchanged
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Motion Guided Propagation (MGP)

Frame t-1 Frame t Frame t+1

* |n each frame, some objects are not found by detector. However, detections on
adjacent frames are complementary to each other.
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Motion Guided Propagation (MGP)

Frame t-1 Frame t Frame t+1
* |n each frame, some objects are not found by detector. However, detections on

adjacen

e Detectio

' frames are complementary to each other.

ns are propagated to adjacent frames. Optical flow is used for guiding the

propagation.

* Propagation results in redundant boxes, which can be easily handled by non-

maximum suppression (NMS)
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* Two groups of proposals: 1) Region Proposal Networks (RPN), 2)
Selective Search + EdgeBox. Given a group of proposals, their
detection scores can be obtained by averaging several models.
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Model Combination

Non-maximum

Suppression
(NMS)

Score Proposal
Average Combination

* Two groups of proposals: 1) Region Proposal Networks (RPN), 2)
Selective Search + EdgeBox. Given a group of proposals, their

detection scores can be obtained by averaging several models.

« NMS is used for combining multiple groups of proposals



Proposed Framework

Still-image Detection

Object
Proposal

Proposal Scoring

Temporal Tubelet Re-scoring

High- Spatial

Temporal

confidence VEVE .
Re-scoring

Tracking pooling

Multi-context Motion Guided

Suppression Propagation

Multi-context Suppression and
Motion Guided Propagation

Model
Combination

Score Average

Proposal
Combination
Non-maximum
Suppression



Component Analysis



49.8

56.9

98.2

Training Data Configuration

CNN Training Data

SVM Training Data

X | X | X
X
X
X | X | X

498 | 47.1 | 35.8 | 51.6 | 52. 3.7
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Framework Components

CRAFT (Provided)

DeeplD-Net (Provided)
Model Combine (Provided)

CRAFT (Additional

)
DeeplD-Net (Additional)
Model Combine (Provided)

Model

Combination




BN

Data Model

Results

: Test Set Rank in
J J results) | 2015
67.7 73.6
73.8 67.8 #1 28/30
65.8 725
69.5 75.0
77.0 69.7 #2 11/30
70.7 75.4
Validation set Test set

J. Yan, et al. CRAFT Objects from Images, axiv preprint.

W. Ouyang, et al. Deepid-net: Deformable deep convolutional neural networks for object detection. CVPR, 2015.
] X. Zeng, et al. Window-Object Relationship Guided Representation Learning for Generic Object Detections , axiv preprint.

W. Ouyang, et al. Factors in Finetuning Deep Model for object detection, axiv preprint.
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