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Outline

• Introduction of Light Field Vision

• Transcat: Transparent Object Categorization

• Transcut: Transparent Object Segmentation
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Scene

Light field
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Light field describes all the light rays in the space



Sensors for visual perception
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Cameras with CCD and CMOS sensors



Only a few light rays can be captured

Scene

Image

Regular camera sensing
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Each light ray can be represented by L(s, t, u, v)

Scene

Light field parameterization
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Position (s, t)

Angle 

(u, v)

4D light field



u𝑠

Light field camera can capture richer information

Scene Viewpoint plane Sensor plane

Light field sensing
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u𝑠

Regular camera can only sample sub light field space

Scene Viewpoint plane Sensor plane

Light field sampling in phase space
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u

𝑠

𝑠u phase space



u𝑠

Light field camera can capture richer information

Scene Viewpoint plane Sensor plane

Light field sampling in phase space
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u

𝑠

𝑠u phase space



Computational Photography
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Multi-focus Multi-view

Light Field is widely used for Image-based Rendering 
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Simultaneously record positional and angular information of ray

Obtain rich information with single-shot

Light field cameras

Stanford

Raytrix

Viewplus

Lytro

PiCam



Light field vision
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Capture

To solve computer vision problems



Computer vision makes our life better
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Help us know more Free our hands



Visual recognition makes it possible
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Visual recognition is important in these applications 

France Prešeren, Poet



Advantage of light field vision
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Regular Computer vision

Light Field Vision

Redundant information makes it easier to understand the 3D world



Light field vision applications

• Surveillance - Accurately detect desired foreground

• Depth estimation - Accurate and consistent

• Salience detection - Accurate in challenge scenes
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[A.Shimada et al., 

IPSJ CVA 2013]

LF method Conventional

LF method Conventional

[S. Wanner et al., 

PAMI2014]

[N. Li et al., 

CVPR2014]

LF method Conventional GT



Light Field Vision Application
-- transparent object recognition
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Transparent object recognition
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Which type is the object?

Where is the object?



Challenge of the target object
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Appearance of transparent objects drastically 

varies with background



Transparent object causes distortion

Regular computer vision methods cannot understand whether 

the image is distorted or not without prior knowledge

Different objects produce different image of the same scene
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Know light field from background
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[Ben-Ezra and Nayar,

ICCV2003]

Known motion,

Manually tagged feature

[G. Wetzstein et al,

ICCV2011]

Known background

Transparent object



Features from Light Field for 
Transparent Object Recognition
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Distortion modeled by light field vision

Background distortion changes with viewpoint

Background distortion is modeled as the correspondences 

between the viewpoints
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Modeled distortion is independent of background textures

Background invariant distortion
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∆u

∆v

Light Field Distortion (LFD) feature
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LFD feature visualization
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2D vectors on different viewpoints

24x2D feature 

vector for each pixel

∆u

∆v



uu𝑠

𝑠

Rays from background are linear distributed

Background Viewpoint plane Sensor plane

𝑠u phase space

Light Field Linearity (LF-linearity)
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Transparent object

𝑠

Sensor planeBackground Viewpoint plane
uu𝑠

𝑠u phase space

Light Field Linearity (LF-linearity)

Rays from transparent object are not linear distributed
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Extract LF-linearity
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∆𝑢

𝑠

Disparity

Euclidean Distance

Hyper-plane

∆𝑢

𝑠



LF-linearity visualization
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Central view LF-linearity



Light Field Consistency (LF-consistency)

( , )view s t(0,0)view

forward 
matching

backward 
matching

Good consistency

Poor consistency
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LF-consistency is used for detecting the depth discontinuity

forward 
matching

backward 
matching

(0,0)view ( , )view s t



Occlusion in light field

Occlusion is caused by depth discontinuity
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Occlusion detector



Occlusion detectors
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Detect occlusion point
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X =  1

The detected occlusion point is from θ = 0

0 0

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

0 0 1 =  0.7



Detected occlusion visualization
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Central view Occlusion response



Feature and descriptor

• LFD Feature (光场扭曲特征)
- 2x24 Dimensional vector

- Describe the distortion pattern

• LF-linearity（光场线性度）
- A metric to describe how much is the distortion

• Occlusion detector （遮挡检测）
- Describe the probability of 

a point to be in the occlusion

- Occlusion in which direction
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Outline

• Introduction of Light Field Vision

• Transcat: Transparent Object Categorization

• Transcut: Transparent Object Segmentation
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TransCat: Transparent Object Categorization
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Which object？



Training pipeline

Extracting the LFD feature

Training based on Bag of 
features

Training based on Bag of 
features

Estimate background by LF-linearity
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Filtering the background

Extracting the LFD feature Non-linear

Non-linear
Non-linear

Non-linear

Linear

Linear

Linear

Linear



Extracting the LFD feature

Filtering the background

Training based on Bag of 
features

Training pipeline
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Estimate relative differences by 

optical flow



Representative LFD

Feature space

Extracting the LFD feature

Filtering the background 
by LF-linearity

Training based on Bag of 
features

Training pipeline
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Representative LFD

Categorization based 
on Bag of features

Testing for transparent objects categorization
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result



Experimental setting
18 objects 10 backgrounds
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Background scenes can be dynamic!



Categorization result
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Average categorization accuracy: 84%
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Evaluation by leave-one-out cross-validation



Analysis

• Applicable conditions
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Analysis

• Applicable conditions
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Results for real scene
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Outline

• Introduction of Light Field Vision

• Transcat: Transparent Object Categorization

• Transcut: Transparent Object Segmentation
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Transcut: Transparent Object Segmentation
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Properties of different components

Transparent object segmentation formulated as 

labeling problem
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Trans 

Obj

Background

Good LF-linearity

Occlusion

Extracted by occlusion detector

Transparent Object

Poor LF-linearity 

exclude the occlusion



Regional term

Central 

view of 

input light 

field image

Background penalty

Foreground penalty

large penalty assigns to pixels 

that have poor LF-linearity 

exclude the occlusion area

large penalty assigns to 

pixels with poor LF-linearity in 

the occlusion or pixels with 

good LF-linearity
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Boundary term

Central 

view of 

input light 

field image

q3

…

…

p

q2

q4

q1

…

…

If        is from  𝑂𝑝 θ = 0,

Detected 

occlusion point 
 𝑂𝑝
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Energy minimization
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Central 

view of 

input light 

field image

Regional term

Boundary term
Graph 

Cut



Experiments

Object 1            Object 2              Object 3             Object 4             Object 5              Object 6           Object 7

Scene 1           Scene  2            Scene  3           Scene  4          Scene 5            Scene 6          Scene 7
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Background scenes can be dynamic!



Comparison with related work
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Finding glass
McHenry et al., CVPR2005

6 features from appearance

LF-linearity thresholding

Single feature from LF



Visual comparison
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Images from the central viewpoint

Results from Finding glass

Results from LF-linearity thresholding

Results from TransCut

Ground Truth



Quantitative comparison
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TP

FN FP

F-measure Recall Precision

Th=1 0.19 0.84 0.11

Th=2 0.34 0.78 0.22

Th=3 0.42 0.76 0.29

Th=4 0.45 0.73 0.33

Th=5 0.48 0.70 0.37

Th=6 0.49 0.67 0.39

Th=7 0.50 0.65 0.41

Th=8 0.50 0.63 0.43

Th=9 0.50 0.61 0.44

F-measure Recall Precision

Finding glass 0.30 0.82 0.19

LF-linearity 

thresholding
0.50 0.65 0.41

Proposed 0.85 0.96 0.77



Summary

• Light field vision can get more 
information for solving vision 
problems
- Full space sampling vs. sub-space 

sampling

• Transparent object categorization

• Transparent object segmentation
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Open issues

• Develop robust feature descriptors
- Distance invariant

- Rotation invariant

• Apply to other objects
- Specular objects

• Recover the undistorted background

• Reconstruct 3D shape of transparent objects
- Natural scenes
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Thank you!
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