Light Field Vision for Transparent Object Categorization and Segmentation 光场视觉在透明物体分类和分割中的应用

Yichao Xu 徐轶超

Jan. 6, 2016

Just a reminder – Last day P4A-04

About me

- A: Hometown in Zhejiang
 - Jiaxing
- B: Undergraduate in Beijing - BESTI
- C: Master 1 in Anhui
 - USTC, Hefei
- D: Master 2-3 in Shanghai
 - SINAP, CAS
- E: PhD in Fukuoka, Japan
 - Kyushu University

Outline

- Introduction of Light Field Vision
- Transcat: Transparent Object Categorization
- Transcut: Transparent Object Segmentation

Light field

Scene

Light field describes all the light rays in the space

Sensors for visual perception

Cameras with CCD and CMOS sensors

Regular camera sensing

Only a few light rays can be captured

Light field parameterization

Light field sensing

Light field camera can capture richer information

Light field sampling in phase space

Regular camera can only sample sub light field space

Light field sampling in phase space

Computational Photography

Multi-focus

Multi-view

Light Field is widely used for Image-based Rendering

Light field cameras

Simultaneously record positional and angular information of ray

Obtain rich information with single-shot

Computer vision makes our life better

Help us know more

Free our hands

Visual recognition makes it possible

Visual recognition is important in these applications

Advantage of light field vision

Regular Computer vision

Redundant information makes it easier to understand the 3D world

Light field vision applications

• Surveillance - Accurately detect desired foreground LF method Conventional

[A.Shimada et al., IPSJ CVA 2013]

• Depth estimation - Accurate and consistent LF method Conventional

[S. Wanner et al., PAMI2014]

• Salience detection - Accurate in challenge scenes

[N. Li et al., CVPR2014]

Light Field Vision Application -- transparent object recognition

Transparent object recognition

Which type is the object? Where is the object?

Challenge of the target object

Appearance of transparent objects drastically varies with background

Transparent object causes distortion

Different objects produce different image of the same scene

Regular computer vision methods cannot understand whether the image is distorted or not without prior knowledge

Know light field from background

Transparent object

[Ben-Ezra and Nayar, ICCV2003] Known motion, Manually tagged feature

[G. Wetzstein et al, ICCV2011] Known background Features from Light Field for Transparent Object Recognition

Distortion modeled by light field vision

Background distortion changes with viewpoint

Background distortion is modeled as the correspondences between the viewpoints

Background invariant distortion

Modeled distortion is independent of background textures

Light Field Distortion (LFD) feature

 \bigotimes

LFD feature visualization

∆v

24x2D feature vector for each pixel

2D vectors on different viewpoints

Light Field Linearity (LF-linearity)

Rays from background are linear distributed

Light Field Linearity (LF-linearity)

Rays from transparent object are not linear distributed

Extract LF-linearity

LF-linearity visualization

Central view

LF-linearity

Light Field Consistency (LF-consistency) Poor consistency

LF-consistency is used for detecting the depth discontinuity

Occlusion in light field

Occlusion detector

0	0	()	0.1	0.1
0	0	()	0.1	0.1
0	0	()	0.1	0 .1
0	0	()	0.1	0.1
0	0	()	0.1	0.1

Occlusion is caused by depth discontinuity

Occlusion detectors

0	0	0	0.1	0.1
0	0	0	0.1	0.1
0	0	0	0.1	0.1
0	0	0	0.1	0.1
0	0	0	0.1	0.1

Ø	0.1	0.1	0.1	0.1
0	Ø	0.1	0.1	0.1
0	0	Ø	0.1	0.1
0	0	0	6	0.1
0	0	0	0	0.1

0.1	0.1	0,1	0.1	0.1
0.1	0.1	01	0.1	0.1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0.1	0.1	0.1	0.1	0
0.1	0.1	0.1	0	0
0.1	0.1	Ø	0	0
0.1	0	0	0	0
ø	0	0	0	0

0.1	0.1	0	0	0
0.1	0.1	0	0	0
0.1	0.1	-0	0	0
0.1	0.1	0	0	0
0.1	0.1	0	0	0

a	0	0	0	0
0.1	0	0	0	0
0.1	0.1	2	0	0
0.1	0.1	0.1	Ø	0
0.1	0.1	0.1	0.1	Q

0	0	0	0	0		
0	0	0	0	0		
0	0	P	0	0		
0.1	0.1	0.1	0.1	0.1		
0.1	0.1	0.1	0.1	0.1		

0	0	0	0	ø
0	0	0	ø	0.1
0	0	×	0.1	0.1
0	ø	0.1	0.1	0.1
0	0.1	0.1	0.1	0.1

(e) $\theta = 180$ (f) $\theta = 225$ (g) $\theta = 270$ (h) $\theta = 315$

Detect occlusion point

0	0	0	1	1
0	0	0	1	1
0	0	0	1	1
0	0	0	1	1
0	0	0	1	1

The detected occlusion point is from $\theta = 0$

Detected occlusion visualization

Central view

Occlusion response

Feature and descriptor

- LFD Feature (光场扭曲特征)
 - 2x24 Dimensional vector
 - Describe the distortion pattern
- •LF-linearity(光场线性度)
 - A metric to describe how much is the distortion
- Occlusion detector (遮挡检测)
 - Describe the probability of a point to be in the occlusion
 - Occlusion in which direction

Outline

- Introduction of Light Field Vision
- Transcat: Transparent Object Categorization
- Transcut: Transparent Object Segmentation

TransCat: Transparent Object Categorization

Training pipeline

Filtering the background

Extracting the LFD feature

Estimate relative differences by optical flow

Experimental setting 18 objects

10 backgrounds

(a) Background A

(b) Background B

(c) Background C

(d) Background D

(e) Background E

(f) Background F

(g) Background G

(j) Background J

Background scenes can be dynamic!

Categorization result

Evaluation by leave-one-out cross-validation

Average categorization accuracy: 84%

🛿 KYUSHU UNIVERSITY

Analysis

Applicable conditions

Analysis

KYUSHU UNIVERSITY

Results for real scene

(a) Indoor

(b) Outdoor

Recognition ratios for real experiment.

	6 objects	10 objects	15 objects	18 objects
Proposed LFD feature	0.766	0.678	0.587	0.533
Standard SIFT	0.160	0.108	0.075	0.063

Outline

- Introduction of Light Field Vision
- Transcat: Transparent Object Categorization
- Transcut: Transparent Object Segmentation

Transcut: Transparent Object Segmentation

Properties of different components

$$E(l) = \sum_{p \in P} R_p(l_p) + \alpha \sum_{(p,q) \in N} B_{p,q} \cdot \delta(l_p, l_q)$$

Transparent object segmentation formulated as labeling problem

Regional term

Background penalty

large penalty assigns to pixels that have poor LF-linearity exclude the occlusion area

Central view of input light field image

Foreground penalty

large penalty assigns to pixels with poor LF-linearity in the occlusion or pixels with good LF-linearity

Boundary term

view of input light field image

Detected occlusion point \tilde{O}_p

Energy minimization

Regional term

Central view of input light field image

Experiments

Background scenes can be dynamic!

Comparison with related work

Finding glass McHenry et al., CVPR2005

Visual comparison

Quantitative comparison

		F-measure	e Recall	Precision
Fin	ding glas	s 0.30	0.82	0.19
LF thr	-linearity esholding	0.50	0.65	0.41
P	roposed	0.85	0.96	0.77
		F-measure	Recall	Precision
	Th=1	0.19	0.84	0.11
	<i>Th=2</i>	0.34	0.78	0.22
	Th=3	0.42	0.76	0.29
	Th=4	0.45	0.73	0.33
	Th=5	0.48	0.70	0.37
	Th=6	0.49	0.67	0.39
	Th=7	0.50	0.65	0.41
	Th=8	0.50	0.63	0.43
	Th=9	0.50	0.61	0.44

$$F = \frac{2 * Precision * Recall}{Precision + Recall}$$
$$Recall = TP/(TP + FN)$$
$$Precision = TP/(TP + FP)$$

Summary

- Light field vision can get more information for solving vision problems
 - Full space sampling vs. sub-space sampling

Transparent object categorization

Transparent object segmentation

Open issues

- Develop robust feature descriptors
 - Distance invariant
 - Rotation invariant
- Apply to other objects
 Specular objects

Recover the undistorted background

- Reconstruct 3D shape of transparent objects
 - Natural scenes

Publications

- Y. Xu, K. Maeno, H. Nagahara, and R. Taniguchi, "Mobile camera array calibration for light field acquisition," in International Conference on Quality Control by Artificial Vision (QCAV), pp. 283–290, 2013.
- Y. Xu, K. Maeno, H. Nagahara, and R. Taniguchi, "Camera array calibration for light field acquisition," Frontiers of Computer Science, 2015, 9(5), pp. 691-702.
- Y. Xu, K. Maeno, H. Nagahara, A. Shimada, and R. Taniguchi, "Light field distortion feature for transparent object classification," Computer Vision and Image Understanding, Vol. 139, pp. 122-135, 2015.
- Y. Xu, H. Nagahara, A. Shimada, and R. Taniguchi, "TransCut: Transparent Object Segmentation from a Light-Field Image", ICCV 2015, Santiago, Chile

Thank you!

