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Alyosha Efros tells us the revolution
will not be supervised at the ICCV
Workshop on Object Understanding

from Interactions.

I agree. — Yann LeCun
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Key Problem Issues

Important Issues:

»Maximally reveal intra-cluster similarity
»Maximally reveal inter-cluster dis-similarity
=Discover clusters with non-convex shape
»Consider cluster assumptions & priors

=Robustness
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Existing Methods & Literatures

Early Methods

Centroid-Based

K-Means (Lloyd 1982); Fuzzy Methods (Bezdek 1981)

Connectivity-Based

Hierarchical Clustering (Sibson 1973; Defays 1977)

Distribution-Based

Mixture Models + EM

More Recent Developments

Density-Based

Mean Shift (Cheng 1995; Comaniciu and Meer 2002)

Spectral-Based

Spectral Clustering (Ng et al. 2002); Self-Tuning SC (Zelnik-Manor and
Perona 2004); Normalized Cuts (Shi and Malik 2000);

Transitive Distance
(Path-Based)

Path-Based Clustering (Fischer and Buhmann 2003b); Connectivity
Kernel (Fischer, Roth, and Buhmann 2004); Transitive Dist Closure
(Ding et al. 2006); Transitive Affinity (Chang and Yeung 2005; 2008)

Subspace Clustering

SSC (Elhamifar and Vidal 2009); LSR (Lu et al. 2012); LRR (Liu et al.
2013); L1-Graph (Cheng et al., 2010); L2-Graph (Peng et al, 2015); LO-
Graph (Yang et al, 2015); SMR (Hu et al., 2014);
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Addressing Non-Convex Clusters
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Transitive Distance
(Path-based) Clustering

Spectral Clustering
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Transitive Dist. (TD) Clustering
with K-Means Duality
(CVPR14)
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Transitive Distance: Concept

O

O @ Ideally, we want:

O ® ® ® O D(xp, xq) < D(xp, x5)
O

Xx. @ @

O

Electrical & Computer Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 9
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Transitive Distance: Concept

Euclidean Distance:
Dpu(xp, xq) > Dpu(xp, T5)

Electrical & Computer Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 10
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Transitive Distance: Concept

@) "2
P
Xq O 1 ;Xs O
L }
: 0

O Intuition: Far away points
can belong to the same
O

class, because there is
@ .,‘ O “ strong evidence of a path
connecting them
Xp O @ g

11
ENGINEERING  2014.

‘(() Electrical & Computer ~ Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR
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Transitive Distance: Concept

The size of the maximum
gap on the path decides
how strong the path
evidence is. It is therefore
a better measure of point
distances than Euclidean
distance

(() Electrical & Computer Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 12
ENGINEERING  2014.
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Transitive Distance: Concept

O : O But there could exist many
: O other path combinations...
'xp O § O
Ps O
Electrical & Computer Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 13
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Transitive Distance: Concept

O "2
Xq .4_,31 . Xs O Just select the path with
O TraEEgve ® the minimum max gap
o \ C M ) from all possible paths.
o O The max gaps on the
/. : O selected path are called
Transitive ./‘ .. O transitive edges and
Edge x, @ defines the final distance

(() Electrical & Computer ~ Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 14
ENGINEERING 2014
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Transitive Distance: Concept

@ K
X, @ P X
| .& Transitive ;S. . .
Edge }
\; ® 0 Transitive Distance:
Dy, 2q) g Dtd(ajpaxs)

4 O
Transitive .
Edge XIO . .
O

Transitive Distance: D, (xy. x,) = min max(d(e
(s ) = iy max(d(e)

Electrical & Computer Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 15
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Transitive Distance: Concept

@ "
X, @ P X
; ¢ Transitive ;S. . .
. Edge }

\; ® 0 Transitive Distance:
¥ Dtd(ajpa 338)

® PS Dyq(ap, 2q) < Dig(ap, v5)
g O
Transitive .

Edge XIO . .

ransitive Distance: D, (xy, xo) = min max(d(e
ta(@p: Tg) PeP eEP( (€)
'heorem 1:

Given a weighted graph with edge weights, each transitive edge lies on the
minimum spanning tree (MST).

Electrical & Computer Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 16
ENGINEERING 2014
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Transitive Distance Embedding

| i Lemma 1:
el i The Transitive Distance is an ultrametric
e, 1 i@ i (metric with strong triangle property).
o I'| G KPL‘-:‘D;:: |
o "% 1 Lemma2:
H " | Every finite ultrametric space with n distinct
8° ' points can be embedded into an n—1 dim
. . Euclidean space.
Original Space Projected Space P

Theorem 2:

If a labeling scheme of a dataset is consistent with the original distance, then given the

derived transitive distance, the convex hulls of the projected images in the TD
embedded space do not intersect with each other.

(() Electrical & Computer ~ Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR
ENGINEERING 2014
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Transitive Distance Embedding

| i Lemma 1:
el i The Transitive Distance is an ultrametric
C o ﬁl i@ (metric with strong triangle property).
"‘ \ 1 Lemmaz:
H " | Every finite ultrametric space with n distinct
8° ' points can be embedded into an n—1 dim
. . Euclidean space.
Original Space Projected Space P

Remarks:

= TD can be embedded into an Euclidean space.

= [ntuitively, for manifold or path cluster structures, TD drags far away intra-cluster
data to be closer. The projected data show nice and compact clusters.

It is very desirable to perform k-means clustering in the embedded space.
Here, TD is doing a similar job as spectral embedding.

(() Electrical & Computer ~ Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR
ENGINEERING 2014
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K-Means Duality

Denote: V the set of data. E the corresponding Euclidean dist matrix of V.
Z4
E=|":

Zn
Property: (K-Means Duality)

The k-means clustering result on the rows of E (treating each row of E like data) is
very similar to the result of k-means directly on V.
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K o . 2% ¢ Labeling different
4 . fromthat in(b)

Labeling different
. Jfromthatin (a)

K-means on V

K-means on rows of E

Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 19
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Clustering with K-Means Duality

= Given a set of data, construct a weighted complete graph.
= Extract an MST from the graph.

= Compute the transitive distance between pair-wise data by referring
to the path edge with largest weight.

= Perform k-means on the rows of transitive distance matrix.

Electrical & Computer Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 20

A ENGINEERNE 2o



Carnegie Mellon

Experiment: Synthetic Data
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Image Segmentation Algorithm

TD Clust

F e

Texton Feature

ENGINEERING  2014.

(() Electrical & Computer Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 22
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Experiment: Image Segmentation

Qualitative result on BSDS300

(() Electrical & Computer ~ Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 23

ENGINEERING  2014.
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Experiment: Image Segmentation

Quantitative result on BSDS300

PRI Vol GCE BDE
MGD | 0.7559 2.4701 0.1925 15.10
NTP | 0.7521 2.4954 0.2373  16.30
Neut | 0.7853 2.1031 0.1947 12.9703
PRIF | 0.8006 — — —
Ours | 0.7926 2.0871 0.1835 13.1707

MGD: T. Cour et al.. Spectral Segmentation with Multiscale Graph Decomposition. CVPR 2005.

NTP: J.Wang et al.. Normalized Tree Partitioning for Image Segmentation. CVPR 2008

PRIF: M. Mignotte. A label field fusion Bayesian model and its penalized maximum rand estimator
for image segmentation. IEEE Trans. on Image Proc., 2010.

Electrical & Computer Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 24
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Conclusions

Proposed a top-down clustering method.

An approximate spectral clustering method without eigen-decomposition.
Transitive distance vs. eigen-decomposition

Able to handle arbitrary cluster shapes

Application to image segmentation with good performance

Electrical & Computer Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 25

ENGINEERING  2014.
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Generalized TD with Minimum
Spanning Random Forest
(IJCAI15)
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Robustness: Short Link Problem
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MST is an over-simplified representation of data. Therefore, TD clustering can be
sensitive to noise. (but still much better than single linkage algorithm)

(() Electrical & Computer  Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 27
ENGINEERING Random Forest, IJCAI 2015.
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Intuition: Consider Linkage Thickness

MST1
—@— % MST2
Electrical & Computer  Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 28
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Generalized TD (GTD): Definition

Definition: Dgi(x,, 2,) = max gmin max{d(e)}
PPy, ecPt
vie{l,...,T'}
Notes:
= Function “gmin” denotes the generalized min returning a set of minimum values
from multiple sets.

= [P denotes multiple sets of paths, each containing a set of all possible paths from
one configuration (realization) of perturbed graph.

(() Electrical & Computer  Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 29
ENGINEERING Random Forest, IJCAI 2015.
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Generalized TD (GTD): Definition

MST-1
MST-2

Element-Wise
Max Pooling

Electrical & Computer Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 30
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Theoretical Properties

Theorem 1;

The generalized transitive distance is also an ultrametric, and can also be embedded
into a finite dimensional Euclidean space.

Theorem 2;

Given a set of bagged graphs, the transitive distance edges lie on the minimum

spanning random forest (MSRF) formed by MSTs extracted from these bagged
graphs.

(() Electrical & Computer  Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 31
ENGINEERING Random Forest, IJCAI 2015.
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Perturbation Algorithm |

Algorithm 1 Extended Sequential Kruskal’s Algorithm

1: Initialize G; = G = (V, FE), where GG is a weighted
graph and FE is the set of available edges.
2. Extract MST from (G using the Kruskal’s algorithm and
return the n X n pairwise transitive distance matrix.
3: Remove the set of MST edges P; from G; and update:
Giy1 = (V. B — P).
: Repeat 2 to 4 for I" times.
. Perform element wise max pooling over the stack of
transitive distance matrices.

S

(() Electrical & Computer  Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 32
ENGINEERING Random Forest, IJCAI 2015.
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Top-Down Clustering

Algorithm 1. (Non-SVD)

= Given a computed GTD pairwise distance matrix D, treat each row as a data sample
= Perform k-means on the rows to generate final clustering labels. (K-means Duality)
Algorithm 2: (SVD)

= Given a computed GTD pairwise distance matrix D, perform SVD: [) = Uxv*

= Extract the top several columns of U with the largest singular values.

= Treat each row of the columns a data sample.

= Perform k-means on the rows to generate final clustering labels.

(() Electrical & Computer  Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 33
ENGINEERING Random Forest, IJCAI 2015.
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Result on Toy Example
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(() Electrical & Computer  Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 34
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Perturbation Algorithm I

Algorithm 2 Random Perturbation Algorithm

1: Initialize G; = G = (V, F), where G is a weighted
graph and F is the set of available edges.
2: If t # 1, obtain GG; by randomly perturbate the edge
length of G with a random number € * rand(1).
3: Extract MST from G, using the Kruskal’s algorithm and
return the n X n pairwise transitive distance matrix.
: Repeat 2 to 4 for T times.
: Perform element wise max pooling over the stack of
transitive distance matrices.

S

(() Electrical & Computer  Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 35
ENGINEERING Random Forest, IJCAI 2015.
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Image Segmentation Algorithm
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Experiment: Image Segmentation
Qualitative result on BSDS300

Normalized Cuts TD + Non-SVD GTD + Non-SVD

(() Electrical & Computer  Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 37
7 ENGINEERING Random Forest, IJCAI 2015.
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Experiment: Image Segmentation
Qualitative result on BSDS300

Normalized Cuts TD + Non-SVD GTD + Non-SVD

(() Electrical & Computer  Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 38
ENGINEERING Random Forest, IJCAI 2015.
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Experiment: Image Segmentation

Quantitative result on BSDS300

Method PRI Vol GCE BDE
[Cour et al., 2005] 0.7559 247 0.1925 15.10
[Wang et al., 2008] 0.7521 2.495 0.2373  16.30

[Mignotte, 2010] 0.8006 — — —
[Lietal., 2011] 0.8205 1.952 0.1998 12.09
[Kim et al., 2013] 0.8146 1.855 0.1809 12.21
[Li et al., 2012] 0.8319 1.685 0.1779  11.29

[Arbelaez et al., 2011] 0.81 1.65 — —
[Yu et al., 2014] 0.7926  2.087 0.1835 13.171
[Wang et al., 2014] 0.8039 2.021 0.2066 13.77
Baseline: Ncut 0.7607 2.108 0.2217 14.608
Baseline: Transitive 0.8295 1.645 0.1688 10.568
GTD (Perturb.) 0.8331 1.639 0.1655 10.372

ectrical & Computer
) ENGINEERING

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning
Random Forest, IJCAI 2015.
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Conclusions

= Extending TD to GTD with minimum spanning random forest and max pooling

» Partially addresses the short link problem in data clustering and weak object
boundaries in image segmentation

= Application to image segmentation with good performance

(() Electrical & Computer  Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 40
ENGINEERING Random Forest, IJCAI 2015.



Carnegie Mellon

On Order-Constrained Transitive
Distance (OCTD) Clustering
(AAAIL16)
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Robustness: Clustering Ambiguity

400 T — T T T T

300
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50 1 L 1 1 1 1 L
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250
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(() Electrical & Computer Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 42
ENGINEERING AAAI 2016.
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Intuition: Path Order Constraint

Euclidean Distance Transitive Distance

=  Weak cluster flexibility Strong cluster flexibility

Trade-Off ?

= Strong cluster shape prior = Weak cluster shape prior

= More robustness against » Less robustness against

clustering ambiguity clustering ambiguity

= Path order=2 = Large path order
P2
Path Order: ‘\l\' « O(P,)=6
X
T @ = O(P,) =2
@ O X . . .
7 » Euclidean dist. can be viewed as a
Py O special case of TD with order = 2.

(() Electrical & Computer Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 43
ENGINEERING AAAI 2016.
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Order-Constrained TD: Definition

Definition:  Dera(xp, 4) = 71;1(111{)} rr1€a7g{{d(e)}
eP, e
O(P)<L

Electrical & Computer Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 44
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Carnegie Mellon

Computing OCTD

= Computing OCTD seems to be easier than TD because the set of
candidate path is only a subset of TD (high order paths not considered).

= Remember the following theorem for TD:
Given a weighted graph with edge weights, each transitive edge lies on
the minimum spanning tree.

= The same theorem does not hold on OCTD!

* Finding the true OCTD is actually very hard.

(() Electrical & Computer Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 45
ENGINEERING AAAI 2016.
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Approximating OCTD with Randomized

Electrical & Computer

ENGINEERING

Samplings

The sampled data forms a clique G

Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering,

AAAI 2016.

46
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Approximating OCTD with Randomized

Samplings
O o ©
O O
O
O
s © O

The rest of the data links to nearest sampled data and form a
spanning graph Gg together with the clique Gc.

Electrical & Computer Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 47
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Approximating OCTD with Randomized

Samplings
O o ©
O O
O
O
s © O

Compute a pairwise TD matrix on Gg by extracting an MST

(() Electrical & Computer Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 48
ENGINEERING AAAI 2016.
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Approximating OCTD with Randomized
Samplings

Theorem 1;

The maximum possible path order on the spanning graph G is upper
bounded by |S| + 2.

Theorem 2:

For any pair of nodes, the number of connecting paths on the spanning
graph is upper bounded by (|S|-2)!

Theorem 3;

The transitive distance obtained on lower-bounded by the order-constrained
transitive distance obtained on the original fully connected graph G

Electrical & Computer Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 49

(Y ENGNEERRE  Zhama
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Sampling Strategy

Kernel Density Estimation:

Bandwidth Estimation:

1 N
5= s — ki, )
=1

(() Electrical & Computer Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 50
ENGINEERING AAAI 2016.
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Ensemble with Min Pooling

MST-1
MST-2

Element-Wise
Min Pooling

Theorem 4:

Given the set of randomly sampled OCTD distances, min pooling gives the
optimal approximation of the true OCTD from the fully connected graph G

(() Electrical & Computer Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 51
ENGINEERING AAAI 2016.
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Ensemble with Mean Pooling

» Unfortunately, OCTD (Min) is not a metric.

= We can use mean pooling instead of min pooling to return OCTD (Mean)
which sub-optimally approximates OCTD but holds metricity.

» Theorem 5: OCTD (Mean) is a metric.

Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 52
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Experiment: Toy Example Datasets

ectrical & Computer
) ENGINEERIN >



Aggregation Bridge Compound Flame Jain Path-Based Spiral Two Diamonds
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Figure 2: Results of comparing methods on toy examples with varying cluster shapes (Best viewed in color). Row 1-6 respec-
tively correspond to Kms (Euc), SC, Ncut, TD+SVD, OCTD (Min) and OCTD (Mean). Names of examples are respectively
“Aggregation”, “Bridge”, “Compound”, “Flame™, “Jain”, “Pathbased”, “Spiral” and “Two Diamonds.

ectrical & Computer
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Kms

SC

Ncut

TD+SVD

OCTD(Min)+SVD

Carnegie Mellon

OCTD(Mean)+SVD

5 @8 B B E &

Gaussian

i

&

%

R15

Figure 3: Results of comparing methods on toy examples with densely aligned Gaussian distributions (Best viewed in color).
Column 1-6 respectively correspond to K-Means, SC, Ncut, TD+SVD, OCTD (Min) and OCTD (Mean). Names of examples
are respectively “Gaussian™ and “R157.

Table 1: Quantitative results of comparing methods on toy datasets. Accuracies are measured with %.

Method Aggregation Bridge Compound Flame Jain Path. Spiral TwoDiam. Gaussian R15
Kms (Euc) 93.91 99.14 83.21 83.75  78.28 7458 3397 93.13 92.5
SC 99.37 99.14 91.73 97.92 100  87.63 100 95.2 99.67
Ncut 99.37 99.14 86.72 98.75 77.48 98.66 87.18 95.8 99.67
TD+SVD 87.94 60.78 99.5 98.75 100  96.99 100 78.6 92.33
OCTD (Min) 99.87 99.57 99.75 100 100  96.66 100 95.33 99
OCTD (Mean) 99.75 99.57 99.75 98.33 100  96.32 100 95.8 99.67
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Experiment: Image Datasets

Extended Yale B Dataset (ExYB)

= 2414 frontal-faces (192 x 168) of 38 subjects.
» Resize images to 55 x 48

= PCA whitening with 99% of energy

AR Face Dataset (AR)

= 50 male and 50 female subjects, 1400 cropped faces
= Resize images to 55 x 40

= PCA whitening with 98% of energy

USPS Dataset

= 9298 16 x 16 hand written digit images

= PCA whitening with 98.5% of energy

Electrical & Computer Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 56
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Experiment: Image Datasets

Clustering Accuracies (%)

Method | Kms SC Ncut D OCTD (Min)
ExYB 44.74 7.28 83.76 82.81 90.64
AR 64.29 80.64 87.29 83.85 88.28
USPS 64.38 82.94 82.38 54.31 85.13
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Experiment: Large-Scale Speech Data

Table 3: Quantitative results of comparing methods on speech datasets. Accuracies are measured with %.

Method Kms (Euclid) Kms (Cos) SC Necut TD+SVD | OCTD (Min) OCTD (Mean)
NIST 04 66.32 81.49 83.32  80.49 7717 84.9 84.51
NIST 05 72.99 77.08 74.3 76.1 72.86 7T.87 73.04
NIST 06 79.84 86.43 80.72 84.4 87.07 88.29 83.47
NIST 08 74.52 78.58 81.51 62.65 74.13 77.91 78.81
NIST Combined 70.85 78.97 76.21  71.66 72.07 80.89 77.24
Switch Board 86.03 90.80 87.79  80.83 78.73 87.53 90.88
Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 58
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Conclusions

= Extending TD to OCTD with random sampling and min pooling

» Significantly improved the algorithm robustness against clustering ambiguity

= Application to both image data and large scale speech data clustering with
good performance.
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