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Transitive Distance Clustering: Theories, 

Algorithms and Applications 
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Background 
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Alyosha Efros tells us the revolution 

will not be supervised at the ICCV 

Workshop on Object Understanding 

from Interactions.  

 

I agree.  — Yann LeCun 
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Wide Applications 

Image Segmentation Document & Text Analysis 

Mid-level Discriminative Visual Element Discovery 
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Key Problem Issues 

Important Issues: 

Maximally reveal intra-cluster similarity 

Maximally reveal inter-cluster dis-similarity 

Discover clusters with non-convex shape 

Consider cluster assumptions & priors 

Robustness 
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Existing Methods & Literatures 

Early Methods 

Centroid-Based K-Means (Lloyd 1982); Fuzzy Methods (Bezdek 1981) 

Connectivity-Based Hierarchical Clustering (Sibson 1973; Defays 1977) 

Distribution-Based Mixture Models + EM 

More Recent Developments 

Density-Based Mean Shift (Cheng 1995; Comaniciu and Meer 2002) 

Spectral-Based 
Spectral Clustering (Ng et al. 2002); Self-Tuning SC (Zelnik-Manor and 

Perona 2004); Normalized Cuts (Shi and Malik 2000); 

Transitive Distance 

(Path-Based) 

Path-Based Clustering (Fischer and Buhmann 2003b); Connectivity 

Kernel (Fischer, Roth, and Buhmann 2004); Transitive Dist Closure 

(Ding et al. 2006); Transitive Affinity (Chang and Yeung 2005; 2008) 

Subspace Clustering 

SSC (Elhamifar and Vidal 2009); LSR (Lu et al. 2012); LRR (Liu et al. 

2013); L1-Graph (Cheng et al., 2010); L2-Graph (Peng et al, 2015); L0-

Graph (Yang et al, 2015); SMR (Hu et al., 2014); 
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Addressing Non-Convex Clusters 

K-means Spectral Clustering Transitive Distance 

(Path-based) Clustering 
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Transitive Dist. (TD) Clustering 

with K-Means Duality 

(CVPR14) 



Ideally, we want: 

Transitive Distance: Concept 

xs 

xp 

xq 

9 Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 



Euclidean Distance: 

Transitive Distance: Concept 

xs 

xp 

xq 

10 Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 



Transitive Distance: Concept 

xs 

xp 

xq 
P1 

P2 

11 Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 

Intuition: Far away points 

can belong to the same 

class, because there is 

strong evidence of a path 

connecting them 



Transitive Distance: Concept 

xs 

xp 

xq 
P1 

P2 

12 Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 

The size of the maximum 

gap on the path decides 

how strong the path 

evidence is. It is therefore 

a better measure of point 

distances than Euclidean 

distance 



Transitive Distance: Concept 

xs 

xp 

xq 

13 Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 

P3 

P4 

But there could exist many 

other path combinations… 



Transitive Distance: Concept 

xs 

xp 

xq 
P1 

P2 

14 Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 

Just select the path with 

the minimum max gap 

from all possible paths. 

The max gaps on the 

selected path are called 

transitive edges and 

defines the final distance 
Transitive 

Edge 

Transitive 

Edge 



Transitive Distance: Concept 

xs 

xp 

xq 
P1 

P2 

Transitive Distance: 

15 Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 

Transitive 

Edge 

Transitive 

Edge 

Transitive Distance: 



Transitive Distance: Concept 

xs 

xp 

xq 
P1 

P2 

Transitive Distance: 

Theorem 1: 

Given a weighted graph with edge weights, each transitive edge lies on the 

minimum spanning tree (MST). 

16 Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 

Transitive 

Edge 

Transitive 

Edge 

Transitive Distance: 



Theorem 2: 

If a labeling scheme of a dataset is consistent with the original distance, then given the 

derived transitive distance, the convex hulls of the projected images in the TD 

embedded space do not intersect with each other. 
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Original Space Projected Space 

Transitive Distance Embedding 

Lemma 1: 

The Transitive Distance is an ultrametric 

(metric with strong triangle property). 

Lemma 2: 

Every finite ultrametric space with n distinct 

points can be embedded into an n−1 dim 

Euclidean space. 

Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 



Remarks: 

 TD can be embedded into an Euclidean space. 

 Intuitively, for manifold or path cluster structures, TD drags far away intra-cluster 

data to be closer. The projected data show nice and compact clusters. 

 It is very desirable to perform k-means clustering in the embedded space. 

 Here, TD is doing a similar job as spectral embedding. 

18 

Original Space Projected Space 

Transitive Distance Embedding 

Lemma 1: 

The Transitive Distance is an ultrametric 

(metric with strong triangle property). 

Lemma 2: 

Every finite ultrametric space with n distinct 

points can be embedded into an n−1 dim 

Euclidean space. 

Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 



K-Means Duality 

Property: (K-Means Duality) 

The k-means clustering result on the rows of E (treating each row of E like data) is 

very similar to the result of k-means directly on V. 

Denote: V the set of data. E the corresponding Euclidean dist matrix of V. 
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K-means on V K-means on rows of E 

Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 



 Given a set of data, construct a weighted complete graph. 

 Extract an MST from the graph. 

 Compute the transitive distance between pair-wise data by referring 

to the path edge with largest weight. 

 Perform k-means on the rows of transitive distance matrix. 
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Clustering with K-Means Duality 

Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 
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SL 

Experiment: Synthetic Data 

TD 

SC 

TD 

Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 
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Image Segmentation Algorithm 

Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 

Superpixelization Input 

Texton Feature 

RAG 

TD Mat 

TD Clust 



Ncut 

SC 

EGS 

Our 
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Qualitative result on BSDS300 

Experiment: Image Segmentation 

Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 



Experiment: Image Segmentation 

Quantitative result on BSDS300 

MGD: T. Cour et al.. Spectral Segmentation with Multiscale Graph Decomposition. CVPR 2005. 

NTP: J.Wang et al.. Normalized Tree Partitioning for Image Segmentation. CVPR 2008 

PRIF: M. Mignotte. A label field fusion Bayesian model and its penalized maximum rand estimator 

for image segmentation. IEEE Trans. on Image Proc., 2010. 

24 Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 



Conclusions 

 Proposed a top-down clustering method. 

 An approximate spectral clustering method without eigen-decomposition. 

 Transitive distance vs. eigen-decomposition 

 Able to handle arbitrary cluster shapes 

 Application to image segmentation with good performance 

25 Zhiding Yu et al., Transitive Distance Clustering with K-Means Duality, CVPR 

2014. 
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Generalized  TD with Minimum 

Spanning Random Forest 

(IJCAI15) 
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Robustness: Short Link Problem 

MST is an over-simplified representation of data. Therefore, TD clustering can be 

sensitive to noise. (but still much better than single linkage algorithm) 

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 



28 

Intuition: Consider Linkage Thickness 

MST1 

MST2 

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 
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Generalized TD (GTD): Definition 

Definition: 

Notes: 

 Function “gmin” denotes the generalized min returning a set of minimum values 

from multiple sets. 

      denotes multiple sets of paths, each containing a set of all possible paths from 

one configuration (realization) of perturbed graph. 

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 
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Generalized TD (GTD): Definition 

TD Dist Mat N 

 

TD Dist Mat 1 

…
 

MST-1 

MST-N 

MST-2 
Element-Wise 

Max Pooling 

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 
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Theoretical Properties 

Theorem 1: 

The generalized transitive distance is also an ultrametric, and can also be embedded 

into a finite dimensional Euclidean space. 

Theorem 2: 

Given a set of bagged graphs, the transitive distance edges lie on the minimum 

spanning random forest (MSRF) formed by MSTs extracted from these bagged 

graphs. 

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 
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Perturbation Algorithm I 

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 
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Top-Down Clustering 

Algorithm 1: (Non-SVD) 

 Given a computed GTD pairwise distance matrix D, treat each row as a data sample 

 Perform k-means on the rows to generate final clustering labels. (K-means Duality) 

Algorithm 2: (SVD) 

 Given a computed GTD pairwise distance matrix D, perform SVD: 

 Extract the top several columns of U with the largest singular values. 

 Treat each row of the columns a data sample. 

 Perform k-means on the rows to generate final clustering labels. 

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 
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Result on Toy Example 

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 
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Perturbation Algorithm II 

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 
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Image Segmentation Algorithm 

Superpixelization Input 

Texton Feature 

RAG 

GTD Mat 

GTD+ 

Non-SVD 

Structured Edge Det. 
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Experiment: Image Segmentation 

Normalized Cuts TD + Non-SVD GTD + Non-SVD 

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 

Qualitative result on BSDS300 
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Normalized Cuts TD + Non-SVD GTD + Non-SVD 

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 

Experiment: Image Segmentation 
Qualitative result on BSDS300 



39 Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 

Experiment: Image Segmentation 

Quantitative result on BSDS300 



Conclusions 

 Extending TD to GTD with minimum spanning random forest and max pooling 

 Partially addresses the short link problem in data clustering and weak object 

boundaries in image segmentation 

 Application to image segmentation with good performance 

40 Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 
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On Order-Constrained Transitive 

Distance (OCTD) Clustering 

(AAAI16) 



42 

Robustness: Clustering Ambiguity 

Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

TD+SVD 

OCTD+SVD 



43 Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

Intuition: Path Order Constraint 

Trade-Off ? 

Transitive Distance 

 Strong cluster flexibility 

 Weak cluster shape prior 

 Less robustness against 

clustering ambiguity 

 Large path order 

Euclidean Distance 

 Weak cluster flexibility 

 Strong cluster shape prior 

 More robustness against 

clustering ambiguity 

 Path order = 2 

Path Order: 

xp 

xq 

P1 

P2 

 O(P1) = 6 

 O(P2) = 2 

 Euclidean dist. can be viewed as a 

special case of TD with order = 2. 
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Order-Constrained TD: Definition 

Definition: 

Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 



45 Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

Computing OCTD 

 Computing OCTD seems to be  easier than TD because the set of 

candidate path is only a subset of TD (high order paths not considered). 

 Remember the following theorem for TD: 

Given a weighted graph with edge weights, each transitive edge lies on 

the minimum spanning tree. 

 The same theorem does not hold on OCTD! 

 Finding the true OCTD is actually very hard. 



46 Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

Approximating OCTD with Randomized 

Samplings 

The sampled data forms a clique GC 



47 Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

Approximating OCTD with Randomized 

Samplings 

The rest of the data links to nearest sampled data and form a 

spanning graph GS together with the clique GC. 



48 Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

Approximating OCTD with Randomized 

Samplings 

Compute a pairwise TD matrix on GS by extracting an MST 



49 Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

Approximating OCTD with Randomized 

Samplings 

Theorem 1: 

The maximum possible path order on the spanning graph GC is upper 

bounded by |S| + 2. 

Theorem 2: 

For any pair of nodes, the number of connecting paths on the spanning 

graph is upper bounded by (|S|-2)! 

Theorem 3: 

The transitive distance obtained on lower-bounded by the order-constrained 

transitive distance obtained on the original fully connected graph G 



50 Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

Sampling Strategy 

Kernel Density Estimation: 

 

 

Bandwidth Estimation: 

 



51 

Ensemble with Min Pooling 

TD Dist Mat N 

 

TD Dist Mat 1 

…
 

MST-1 

MST-N 

MST-2 
Element-Wise 

Min Pooling 

Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

Theorem 4: 

Given the set of randomly sampled OCTD distances, min pooling gives the 

optimal approximation of the true OCTD from the fully connected graph G  
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Ensemble with Mean Pooling 

Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

 Unfortunately, OCTD (Min) is not a metric. 

 We can use mean pooling instead of min pooling to return OCTD (Mean) 

which sub-optimally approximates OCTD but holds metricity. 

 Theorem 5: OCTD (Mean) is a metric. 
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Experiment: Toy Example Datasets 



54 Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

Aggregation Bridge Compound Flame Jain Path-Based Spiral Two Diamonds 

Kms 

SC 

Ncut 

TD+SVD 

OCTD(Min) 

+SVD 

OCTD 

(Mean) 

+SVD 



55 Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

Kms SC Ncut TD+SVD OCTD(Min)+SVD OCTD(Mean)+SVD 

Gaussian 

R15 



56 

Experiment: Image Datasets 

Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

Extended Yale B Dataset (ExYB) 

 2414 frontal-faces (192 x 168) of 38 subjects. 

 Resize images to 55 x 48 

 PCA whitening with 99% of energy 

AR Face Dataset (AR) 

 50 male and 50 female subjects, 1400 cropped faces 

 Resize images to 55 x 40 

 PCA whitening with 98% of energy 

USPS Dataset 

 9298 16 x 16 hand written digit images 

 PCA whitening with 98.5% of energy 
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Experiment: Image Datasets 

Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 

Clustering Accuracies (%) 

Parameter Experiment 
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Experiment: Large-Scale Speech Data 

Zhiding Yu et al., On Order-Constrained Transitive Distance Clustering, 

AAAI 2016. 



Conclusions 

 Extending TD to OCTD with random sampling and min pooling 

 Significantly improved the algorithm robustness against clustering ambiguity 

 Application to both image data and large scale speech data clustering with 

good performance. 

59 Zhiding Yu et al., Generalized Transitive Distance with Minimum Spanning 

Random Forest, IJCAI 2015. 



Thank You! 
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