VALSE webinar, 2015年5月27日

Feature Selection in Image and Video Recognition

Jianxin Wu National Key Laboratory for Novel Software Technology Nanjing University

Introduction

For image classification, how to represent an image?

With

- strong discriminative power; and,
- manageable storage and CPU costs

Bag of words

- Dense sample
- Extract visual descriptor (e.g. SIFT or CNN) at every sample location, usually PCA to reduce dimensionality
- Learning a visual codebook by k-means

Jegou et al. Aggregating local images descriptors into compact codes. TPAMI, 2012

Effect of High Dimensionality

• Blessing

> Fisher Vector: $K \times (2D + 1)$

Super Vector: $K \times (D + 1)$

> State-of-the-art results in many application domains

• Curse

5

➤ 1 million images

▶ 8 spatial pyramid regions

> K = 256, D = 64, 4 bytes to store a floating number

≻1056G bytes!

J. Sanchez *et al*. Image classification with the fisher vector: Theory and practice. IJCV, 2013. X. Zhou *et al*. Image classification using super-vector coding of local image descriptors. ECCV, 2010/.

Solution?

- Use fewer example / dimensions?
 Reduce accuracy quickly
- Feature compression
 Introduction soon
- Feature selection
 This talk

To compress?

Methods in the literature: feature compression

Compress the long feature vectors so that

- Much fewer bytes to store them
- (possibly) faster learning

Product Quantization illustration

- For every 8 dimensions
 - Generate a codebook with 256 words
 - 2. VQ a 8d vector (32 bytes) into a index (1 byte)
 - On-the-fly decoding
 - 1. Get stored index i
 - 2. Expand into 8d c_i

Do not change learning time

8

Jegou *et al.* Product quantization for nearest neighbor search. TPAMI, 2011. Vedaldi & Zisserman. Sparse kernel approximations for efficient classification and detection. CVPR, 2012.

Thresholding

• A simple idea

$$x \leftarrow \begin{cases} -1, & x < 0 \\ +1, & x \ge 0 \end{cases}$$

- 32 times compression
- Working surprisingly well!

• But, why?

Perronnin *et al*. Large-scale image retrieval with compressed Fisher vectors. CVPR, 2010.

Bilinear projections (BPBC)

- FV or VLAD requires rotation
 - ➤ A large matrix times the long vector
- Bilinear projection + binary feature
 - \succ Example: *KD* vector **x** reshape into $K \times D$ matrix X
 - Bilinear projection / rotation

 $\operatorname{sgn}(R_1^T X R_2)$

 $\succ R_1: K \times K, R_2: D \times D$

10

- Smaller storage and faster computation than PQ
- But, learning *R* is very time consuming (circulant?)

Gong *et al*. Learning binary codes for high-dimensional data using bilinear projections. CVPR, 2013.

The commonality

• Linear projection!

New features are linear combinations of multiple dimensions from the original vector

• What does this mean?

>Assuming strong multicollinearity exists!

• Is this true in reality?

Collinearity and multicollinearity

Examining real data find that:

- Collinearity almost never exist
- Too expensive to examine the existence of multicollineairty, but we have something to say

Collinearity

- Existence of strong linear dependencies between two dimensions in the VLAD / FV vector
- Pearson's correlation coefficient

$$r = \frac{\boldsymbol{x}_{:i}^T \boldsymbol{x}_{:j}}{\|\boldsymbol{x}_{:i}\| \|\boldsymbol{x}_{:j}\|}$$

> $r = \pm 1$: perfect collinearity
> r = 0: no linear dependency at all

Three types of checks

- 1. Random pair
- 2. In the same spatial region
- 3. In same code word / Gaussian component (all regions)

From 2 to n

- Multicollinearity strong linear dependency among > 2 dimensions
- Given the missing of collinearity, the chance of multicollinearity is also small
- PCA is essential for FV and VLAD
 Dimensions in PCA are uncorrelated
- Thus, we should choose, not compress!

MI based feature selection

A simple mutual information based importance sorting algorithm to choose features

- Computationally very efficient
- When ratio changes, no need to repeat
- Highly accurate

Yes, to choose!

- Choose is better than compress
 - Given that multicollinearity is missing
- Cannot afford expensive feature selection
 Features too big to put into memory
 Complex algorithms take too long

Usefulness measure

• Mutual information

$$I(\mathbf{x}, \mathbf{y}) = H(\mathbf{x}) + H(\mathbf{y}) - H(\mathbf{x}, \mathbf{y})$$

- *H*: entropy *x*: one dimension *y*: image label vector
- Selection
 - \succ Sort all MI values, choose the top D'
 - ➢ Only one pass of data
 - \geq No addition work if D' changes

Entropy computation

- Too expensive using complex methods
 > e.g. kernel density estimation
- Use discrete quantization

> 1-bit:
$$x \leftarrow \begin{cases} -1, x < 0 \\ +1, x \ge 0 \end{cases}$$

N-bins: uniformly quantize into N bins1-bit and 2-bins are different

Discrete entropy: $H = -\sum_j p_j \log_2 p_j$ Larger N, bigger H value

- Most features are not use
- Choose a small subset is not only for speed or scalability, but also for accuracy!
- 1-bit >> 4/8 bins keep the threshold at 0 is important!

The pipeline

- 1. Generate a FV / VLAD vector
- 2. Only keep the chosen D' dimensions
- 3. Further quantize the D' dimensions into D' bits
- Compression ratio is $\frac{32D}{D'}$
- Store 8 bits in a byte

Image Results

- Much faster in feature dimensionality reduction, learning
- Requires almost no extra storage
- In general, significantly higher accuracy with same ratio

Features

- Use the Fisher Vector
- D=64
 - ▶ 128 dim SIFT, reduced by PCA
- K=256
- Use mean and variance part
- 8 spatial regions
- Total dimensionality: $256 \times 64 \times 2 \times 8 = 262,144$

VOC2007: accuracy

Table 1. Mean average precision (mAP) on VOC 2007. The loss of mAP to original dense feature (ratio 1) is also computed.

Method	Compression ratio	mAP (%)	Loss (%)
MI	1	58.57 ± 0.19	0
	32	60.09 ± 0.09	-1.52
	64	60.05 ± 0.16	-1.48
	128	58.97 ± 0.23	-0.40
	256	56.82 ± 0.49	1.75
	512	52.70 ± 0.44	5.87
	1024	46.52 ± 0.40	12.05
PQ [25]	1	58.8	0
	32(d=6)	58.2	0.6
	64(d = 8)	56.6	2.2
	128(d = 8)	54.0	4.8
	256(d = 8)	50.3	8.5
PQ [21]	1	58.3	0
	32(d = 8)	57.3	1.0
	64(d = 8)	55.9	2.4
	64(d = 16)	56.2	2.1

• #classes: 20

• #training: 5000

ILSVRC2010: accuracy

Method	Compression ratio	Accuracy (%)
	64	61.06
MI	128	56.64
	256	50.15
	32(d=8)	56.2
PQ [21]	64(d = 8)	54.2
	64(d = 16)	54.9

Table 2. Top-5 accuracy on the ILSVRC 2010 dataset.

- #classes: 1000
- #training: 1,200,000
- #testing: 150,000

SUN397: accuracy

Table 3. Top-1 accuracy on the SUN 397 dataset.

Method	Compression ratio	Accuracy (%)
dense FV [22]	1	43.3
multiple features [27]	1	38.0
spatial HOG [7]	1	26.8
	32	$41.88 {\pm} 0.31$
MI	64	42.05 ± 0.36
	128	$40.42 {\pm} 0.40$
	256	$37.36 {\pm} 0.34$
	32	42.72 ± 0.45
PQ	64	$41.74 {\pm} 0.38$
	128	40.13 ± 0.33
	256	37.84 ± 0.33

- #classes: 397
- #training: 19,850

Fine-Grained Categorization

Selecting features is more important

What features (parts) are chosen?

(a) Red-bellied Woodpecker vs. Red-headed Woodpecker

(b) Red-winged Blackbird vs. Yellow-headed Blackbird

(c) Blue Jay vs. Green Jay

How about accuracy?

Table 2: Classification accuracy on Caltech-UCSD Birds 200-2011.

Without annotations in both training and testing		
Methods	Selection fraction	Acc. (%)
Proposed	100% (All)	71.04
	75% (3/4)	71.67
	50 % (1/2)	73.34
	25% (1/4)	75.02
	12.5% (1/8)	73.82
Two-level attention [28]		69.70
Use annotations in training, not in testing		
DPD+DeCAF [6]		44.94
Part based	52.38	
Part based R-CNN-ft (without parts) [32]		62.75
Part based R-CNN-ft (with parts) [32]		73.89
Pose Normalized CNN [3]		75.70

Table 3: Classification accuracy on StanfordDogs.

Without annotations in both training and testing				
Methods	Selection fraction	Acc. (%)		
Proposed	100% (All)	77.23		
	75% (3/4)	78.28		
	50% (1/2)	79.36		
	25% (1/4)	79.92		
	12.5% (1/8)	78.18		
Two-lev	71.90			
Use annotations in both training and testing				
Edge	38.00			
Unsupervis	50.10			
N	39.30			

Published results

Compact Representation for Image Classification: To Choose or to Compress? Yu Zhang, Jianxin Wu, Jianfei Cai CVPR 2014

Towards Good Practices for Action Video Encoding Jianxin Wu, Yu Zhang, Weiyao Lin CVPR 2014

New methods & results in arXiv

- VOC 2012: 90.7%, VOC 2007: 92.0%
 - <u>http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?c</u> <u>hallengeid=11&compid=2</u>
 - ▶ <u>http://arxiv.org/abs/1504.05843</u>
- SUN 397: 61.83%
 - http://arxiv.org/abs/1504.05277
 - http://arxiv.org/abs/1504.04792
- Details of fine-grained categorization
 <u>http://arxiv.org/abs/1504.04943</u>

DSP

- An intuitive, principled, efficient, and effective image representation for image recognition
 - ➤ Using only the convolutional layers of CNN
 - Very efficient, but impressive representational power
 - No fine-tuning at all
 - ≻ Extremely small but effective FV / VLAD encoding (K=1, or 2)
 - Small memory footprint
 - New normalization strategy
 - Matrix norm to utilize global information
 - ➢ Spatial pyramid
 - Natural and principled way to integrate spatial information

D3

- Discriminative Distribution Distance
 - FV, VLAD and Super Vectors are generative representations
 - They ask "how one set is generated?"
 - But for image recognition, we care about "how two sets are separated?"
 - Proposed directional distribution distance to compare two sets
 - Proposed using a classifier MPM to *robustly* estimate the distance

D3 is very stableD3 is very efficient

Multiview image representation

- Using DSP as the global view
- But context is also important: what are the neighborhood structure?
 - ➢ Solving distance metric learning as a DNN
 - ➤ Called the label view
- Integrated (global+label) views
 > 90.7% @ VOC2012 recognition task
 > 92.0% @ VOC2007 recognition task

