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Introduction

For image classification, how to represent an image?

With

• strong discriminative power; and,

• manageable storage and CPU costs
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Bag of words
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 Dense sample 

 Extract visual descriptor 

(e.g. SIFT or CNN) at 

every sample location, 

usually PCA to reduce 

dimensionality

 Learning a visual codebook 

by k-means



The VLAD pipeline
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 𝐾 code words 𝒄𝑖 ∈ ℝ𝐷

 Pooling

𝒇𝑖 =  

𝒙∈𝒄𝑖

𝒙 − 𝒄𝑖

 Concatenation

[𝒇1𝒇2 ⋯𝒇𝐾]

 Dimensionality: 𝐷 × 𝐾

Jegou et al. Aggregating local images descriptors into compact codes. TPAMI, 2012



Effect of High Dimensionality
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 Blessing

Fisher Vector: 𝐾 × (2𝐷 + 1)

Super Vector: 𝐾 × 𝐷 + 1

State-of-the-art results in many application domains

 Curse

1 million images

8 spatial pyramid regions

𝐾 = 256, 𝐷 = 64, 4 bytes to store a floating number

1056G bytes!

J. Sanchez et al. Image classification with the fisher vector: Theory and practice.  IJCV, 2013. 

X. Zhou et al. Image classification using super-vector coding of local image descriptors. ECCV, 2010.



Solution?
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 Use fewer example / dimensions?

Reduce accuracy quickly

 Feature compression

Introduction soon

 Feature selection

This talk



To compress?

Methods in the literature: feature compression

Compress the long feature vectors so that

• Much fewer bytes to store them

• (possibly) faster learning
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Product Quantization illustration
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 For every 8 dimensions

1. Generate a codebook with 256 

words

2. VQ a 8d vector (32 bytes) into 

a index (1 byte)

 On-the-fly decoding

1. Get stored index 𝑖

2. Expand into 8d 𝒄𝑖

Do not change learning time

Jegou et al. Product quantization for nearest neighbor search. TPAMI, 2011.

Vedaldi & Zisserman. Sparse kernel approximations  for efficient classification and detection. 

CVPR, 2012.



Thresholding
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 A simple idea

𝑥 ←  
−1, 𝑥 < 0
+1, 𝑥 ≥ 0

 32 times compression

 Working surprisingly well!

 But, why?

Perronnin et al. Large-scale image retrieval with compressed Fisher vectors. CVPR, 2010.



Bilinear projections (BPBC)
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 FV or VLAD requires rotation

A large matrix times the long vector

 Bilinear projection + binary feature

 Example: 𝐾𝐷 vector  𝒙 reshape into 𝐾 × 𝐷 matrix 𝑋

 Bilinear projection / rotation

sgn 𝑅1
𝑇𝑋𝑅2

 𝑅1: 𝐾 × 𝐾, 𝑅2: 𝐷 × 𝐷

 Smaller storage and faster computation than PQ

 But, learning 𝑅 is very time consuming (circulant?)

Gong et al. Learning  binary codes for high-dimensional data using bilinear projections. CVPR, 2013. 



The commonality
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 Linear projection!

New features are linear combinations of multiple 

dimensions from the original vector

 What does this mean?

Assuming strong multicollinearity exists!

 Is this true in reality?



Collinearity and multicollinearity

Examining real data find that:

• Collinearity almost never exist

• Too expensive to examine the existence of 

multicollineairty, but we have something to say
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Collinearity
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 Existence of strong linear dependencies between two 

dimensions in the VLAD / FV vector

 Pearson’s correlation coefficient

𝑟 =
𝒙:𝑖
𝑇𝒙:𝑗

𝒙:𝑖 𝒙:𝑗
𝑟 = ±1: perfect collinearity

𝑟 = 0: no linear dependency at all



Three types of checks
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Region 2

8 Spatial regions

Word 1 Word 2 … Word K

Dim 1 Dim 2 … Dim D

1. Random pair

2. In the same spatial region

3. In same code word / Gaussian component (all regions)
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 Same Gaussian shows a 

little stronger 

correlation

 Mostly no correlation at 

all!



From 2 to 𝑛
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 Multicollinearity – strong linear dependency among > 2
dimensions

 Given the missing of collinearity, the chance of 

multicollinearity is also small

 PCA is essential for FV and VLAD

Dimensions in PCA are uncorrelated

 Thus, we should choose, not compress!



MI based feature selection

A simple mutual information based importance sorting algorithm to 

choose features

• Computationally very efficient

• When ratio changes, no need to repeat

• Highly accurate
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Yes, to choose!
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 Choose is better than compress

Given that multicollinearity is missing

 Cannot afford expensive feature selection

Features too big to put into memory

Complex algorithms take too long



Usefulness measure

19

 Mutual information

𝐼 𝒙, 𝒚 = 𝐻 𝒙 + 𝐻 𝒚 − 𝐻(𝒙, 𝒚)

𝐻: entropy

𝒙: one dimension

𝒚: image label vector

 Selection

Sort all MI values, choose the top 𝐷’

Only one pass of data

No addition work if 𝐷’ changes



Entropy computation
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 Too expensive using complex methods

e.g. kernel density estimation

 Use discrete quantization

1-bit: 𝑥 ←  
−1, 𝑥 < 0
+1, 𝑥 ≥ 0

N-bins: uniformly quantize into N bins

1-bit and 2-bins are different

Discrete entropy: 𝐻 = − 𝑗 𝑝𝑗 log2 𝑝𝑗
Larger N, bigger 𝐻 value
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 Most features are not 

use

 Choose a small subset is 

not only for speed or 

scalability, but also for 

accuracy!

 1-bit >> 4/8 bins –

keep the threshold at 0 is 

important!



The pipeline

22

1. Generate a FV / VLAD vector

2. Only keep the chosen 𝐷’ dimensions

3. Further quantize the 𝐷’ dimensions into 𝐷’ bits

 Compression ratio is 
32𝐷

𝐷′

 Store 8 bits in a byte



Image Results

• Much faster in feature dimensionality reduction, learning

• Requires almost no extra storage

• In general, significantly higher accuracy with same ratio
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Features
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 Use the Fisher Vector

 D=64

128 dim SIFT, reduced by PCA

 K=256

 Use mean and variance part

 8 spatial regions

 Total dimensionality:

256 × 64 × 2 × 8 = 262,144



VOC2007: accuracy
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 #classes: 20

 #training: 5000

 #testing: 5000



ILSVRC2010: accuracy
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 #classes: 1000

 #training: 1,200,000

 #testing: 150,000



SUN397: accuracy
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 #classes: 397

 #training: 19,850

 #testing: 19,850



Fine-Grained Categorization

Selecting features is more important
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Selection of 

subtle 

differences?
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What features (parts) are chosen?
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31
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How about accuracy?
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Published results
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Compact Representation for Image Classification: To Choose or to 

Compress?   Yu Zhang, JianxinWu, Jianfei Cai CVPR 2014

Towards Good Practices for Action Video Encoding

JianxinWu, Yu Zhang, Weiyao Lin CVPR 2014



New methods & results in arXiv
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 VOC 2012:  90.7%, VOC 2007: 92.0%

http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?c

hallengeid=11&compid=2

http://arxiv.org/abs/1504.05843

 SUN 397: 61.83%

http://arxiv.org/abs/1504.05277

http://arxiv.org/abs/1504.04792

 Details of fine-grained categorization

http://arxiv.org/abs/1504.04943

http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=2
http://arxiv.org/abs/1504.05843
http://arxiv.org/abs/1504.05277
http://arxiv.org/abs/1504.04792
http://arxiv.org/abs/1504.04943


DSP
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 An intuitive, principled, efficient, and effective image 

representation for image recognition

Using only the convolutional layers of CNN

 Very efficient, but impressive representational power

 No fine-tuning at all

Extremely small but effective FV / VLAD encoding (K=1, or 2)

 Small memory footprint

New normalization strategy

 Matrix norm to utilize global information

Spatial pyramid

 Natural and principled way to integrate spatial information



D3
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 Discriminative Distribution Distance

FV, VLAD and Super Vectors are generative representations

They ask “how one set is generated?”

But for image recognition, we care about “how two sets are 

separated?”

Proposed directional distribution distance to compare two sets

Proposed using a classifier MPM to robustly estimate the distance

D3 is very stable

D3 is very efficient



Multiview image representation
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 Using DSP as the global view

 But context is also important: what are the neighborhood 

structure?

Solving distance metric learning as a DNN

Called the label view

 Integrated (global+label) views

90.7% @ VOC2012 recognition task

92.0% @ VOC2007 recognition task
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Thanks!


