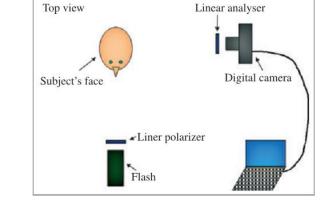


Pore-scale Facial Feature Extraction and Its Application

Dong LI

Guangdong University of Technology leedong111@gmail.com

http://drdongli.github.io


Outline

- Introduction
 - Motivation; state of the art.
- Distinctive features from pore-scale facial keypoints
 - Different scales of facial features; pore index and quantity-driven detection; relative-position descriptor.
- Face matching using pore-scale facial features
 - Candidate-constrained matching.
- Face verification using pore-scale facial features
 - Feature dimension reduction; feature matching and robust fitting; similarity measurement.
- Conclusions and applications
 - Facial Pores as a new biometric; Twins identification; Face recognition;
 Forensic

Motivation

- Why Pore Scale?
- Applications:
 - Quantitative dermatology
 - Tracking and animation
 - 3D face reconstruction
 - Face recognition/verification
 - Biometrics

Linear polarizer

State of the art

- Pore-scale facial feature extraction and matching
 - a point matching to a surrounding region [1]
 - a point matching to a line (NCC, DAISY)
 - Uncalibrated [2]

[1] S.K. Madan, K.J. Dana, and O.G. Cula, "Quasiconvex Alignment of Multimodal Skin Images for Quantitative Dermatology", CVPRW2009
[2] Y. Lin, G. Medioni, and J. Choi., "Accurate 3d face reconstruction from weakly calibrated wide baseline images with profile contours", CVPR2010.

State of the art

- HR face recognition
 - texture based [1]
 - keypoint-detection based [2]

[1] D. Lin and X. Tang, "Recognize high resolution faces: From macrocosm to microcosm", CVPR2006.

[2] U. Park and A. K. Jain. "Face matching and retrieval using soft biometrics", Information Forensics and Security, 5(3):406–415, 2010.

Other related skin researches

- Texture based [3] [4]

[3] O. G. Cula, K. J. Dana, F. P. Murphy, and B. K. Rao, "Skin texture modeling," IJCV, vol. 62, no. 1-2, pp. 97–119, 2005.

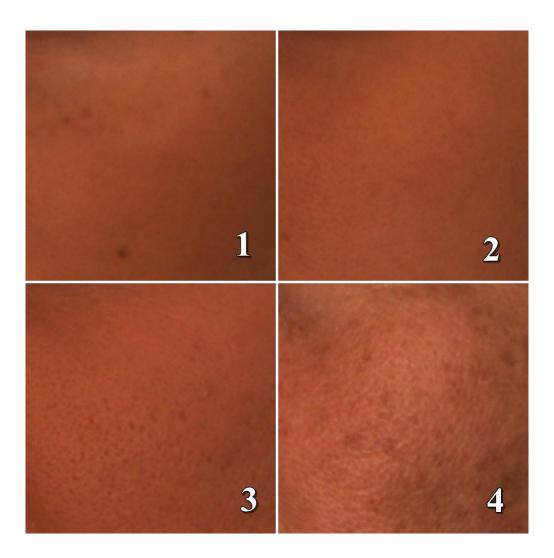
[4]J. Xie et al., " A Study of Hand Back Skin Texture Patterns for Personal Identification and Gender Classification", Sensor, vol. 7, pp. 8691-8709, 2012

Open problems

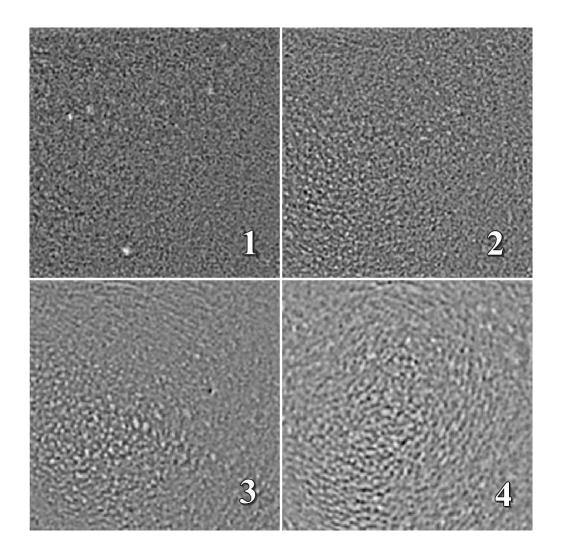
- Are the pores different for intra-person?
- Are the pores different for inter-person?
- Are the pore features robust?
 - Poses; Aging; Expressions; Lighting; Resolutions; Blurring; Noise

Scope of this work

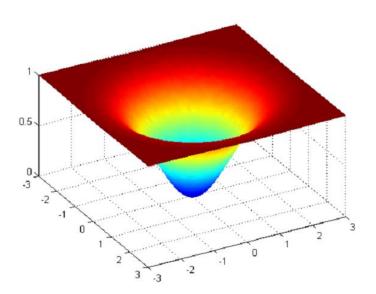
- Distinctive features from pore-scale facial keypoints
- Face matching using pore-scale facial features
- Face verification using pore-scale facial feature
- Dong Li, Huiling Zhou and Kin-Man Lam, High-Resolution Face Verification Using Pore-scale Facial Features, IEEE Transactions on Image Processing, 24(8), pp. 2317-2327, 2015, doi: 10.1109/TIP.2015.2412374.
- Dong Li and Kin-Man Lam, Design and Learn Distinctive Features from Pore-scale Facial Keypoints, Pattern Recognition, 48(3), pp. 732-745, 2015, doi: 10.1016/j.patcog.2014.09.026.

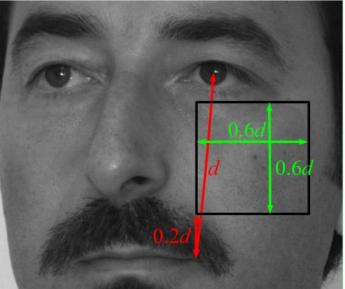

Different scales of facial features

- Primary facial features
 - Eyes, eyebrows, nose, mouth, and face boundary
- Marker-scale facial features
 - Involves ten categories, such as freckle, mole, scar, wrinkle, etc.
- Pore-scale facial features
 - Pores, fine wrinkles, and hair


Observation on pores

Observation on pores


Observation on pores



Pore-scale facial-feature detection

- Most are blob shaped \rightarrow DoG detector
- Only darker keypoints
- Similar quantity \rightarrow adaptive threshold
- Pore-scale facial-feature Modeling

 $pore(x, y, \sigma) = 1 - 2\pi\sigma^2 G(x, y, \sigma)$

The number of DoG octaves

$$D_{pore}(x, y, \sigma_1, \sigma_2)$$

$$= [G(x, y, k\sigma_1) - G(x, y, \sigma_1)] * pore(x, y, \sigma_2)$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} [G(u, v, k\sigma_1) - G(u, v, \sigma_1)]$$

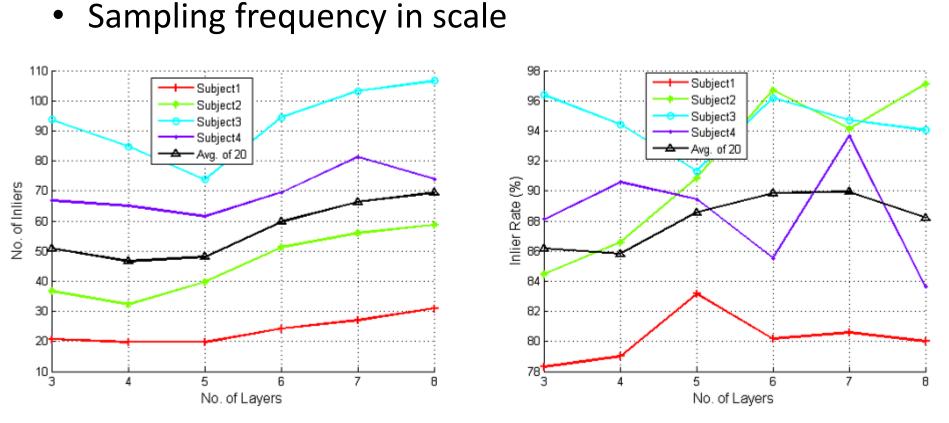
$$\cdot pore(x - u, y - v, \sigma_2) du dv.$$

- Set x=0, y=0, D_{pore} is maximized when $\hat{\sigma}_1 = k^{-1/2} \sigma_2.$
- How many octaves of DoG?

– When o=3,
$$\sigma_2 = k^{1/2} \hat{\sigma}_{1,o=3,N_s+1} = k^{1/2} 2^3 \sigma_0 > 6.4$$

Adaptive threshold and Pore Index

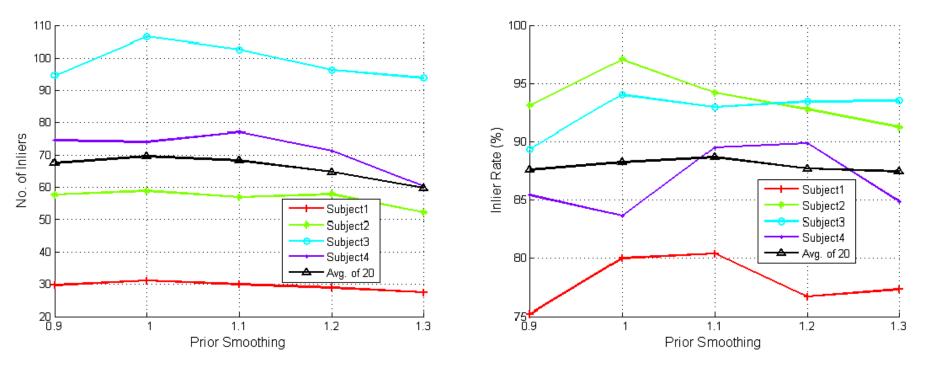
• The peak value of DoG response:


$$P = D_{pore}(\hat{\sigma}_2) = (k-1)/(k+1).$$

- The maximized response is independent of the scale of the pores → invariant to image resolutions
- The peak value is relevant to the sampling frequencies in scale ($k=2^{1/N_s}$. Each Octave has N_s DoG layers.)
- An adaptive threshold τ is searched on $[0, 0.2 \times P]$
- Pore Index is defined as

$$R_{pore} = \tau / P.$$

reflects the roughness/contrast of the skin


Parameter selection

*Inlier Rate=the No. of inliers / the No. of matches

Parameter selection

• Sampling frequency in the spatial domain

*Inlier Rate=the No. of inliers / the No. of matches

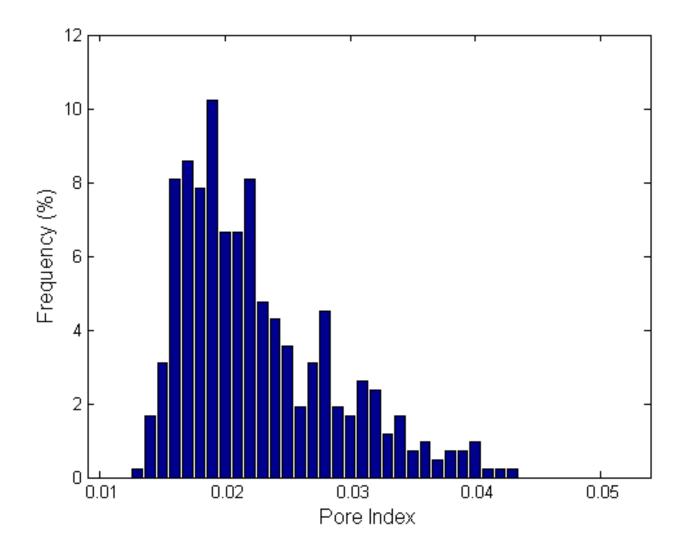
Relative-position descriptor

Parameters of the PSIFT and SIFT descriptors.

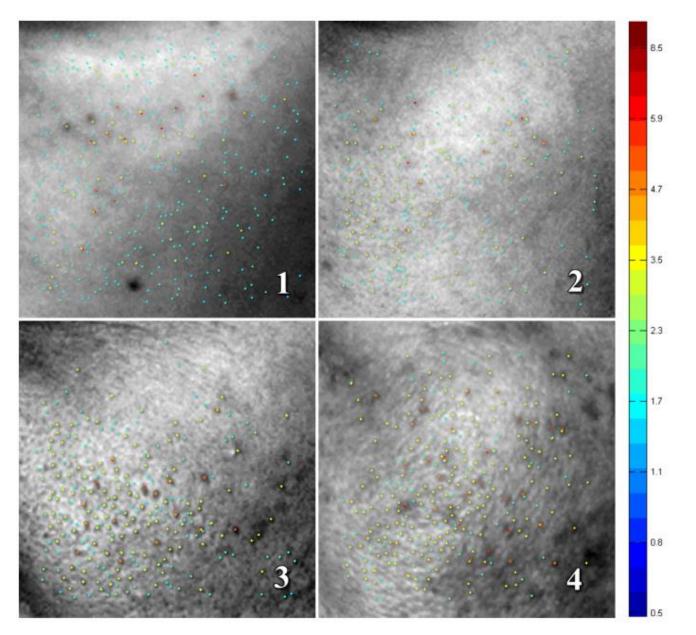
	PSIFT	SIFT
No. of subregions	8×8	4×4
Support size of total	$6 \times$ scale of key-	$3 \times$ scale of key-
subregions	points	points
Support size of each	$0.75 \times \text{scale of}$	$0.75 \times \text{scale of}$
subregion	keypoints	keypoints
No. of Orientation bins	8	8
Dimension of the fea-	512	128
ture		

Pore-to-pore Correspondences Dataset

- Face images with 10-, 20-, 30- and 45-degree poses of 105 subjects in Bosphorus Database are used.
- 420 cropped cheek-region images
- Matching based on PSIFT and RANSAC
- A track is a set of matched keypoints across the face images of a subject at different poses.
- 4,240 tracks is established containing 4 keypoints corresponding to the 10-, 20-, 30- and 45-degree pose.

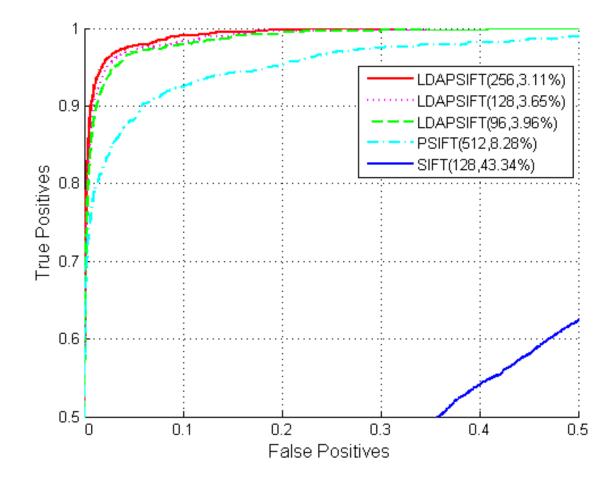

Discriminant Learning

- Distortions are hard to model
- A supervised learning procedure based on LDA is proposed.
- 4,240 classes(tracks), 4 pore images in a class


Experiments on Cropped Skin images

- Dataset
 - Bosphorus face database
 - 105 subjects, 420 skin images with different poses
 - Original resolution is about 1,400x1,200 pixels
 - After cropped, the skin region is about 350x350 pixels

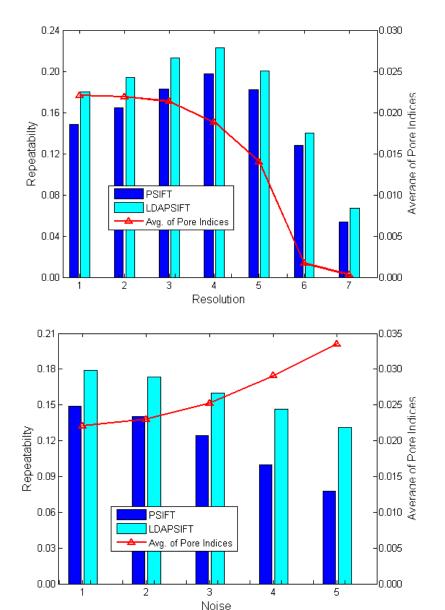
Statistics of Pore Indices



Visualization

22

ROC Curves of Different Descriptors


Experiments: Skin matching

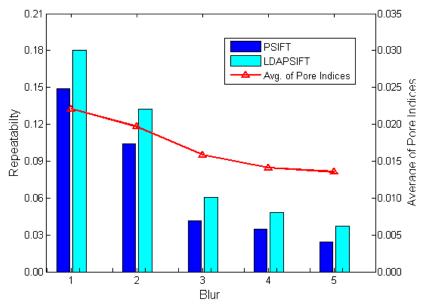
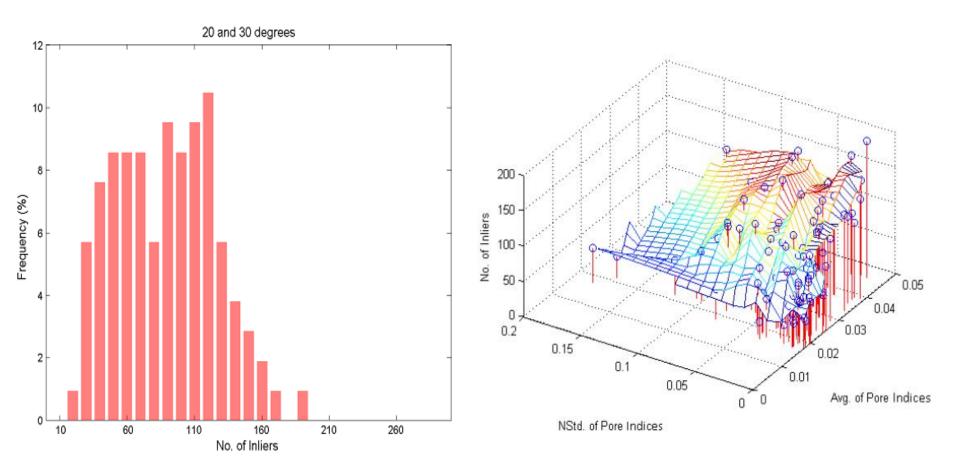

- The influences of each stage of our algorithm
 - Matching from 10 degrees to 45 degrees

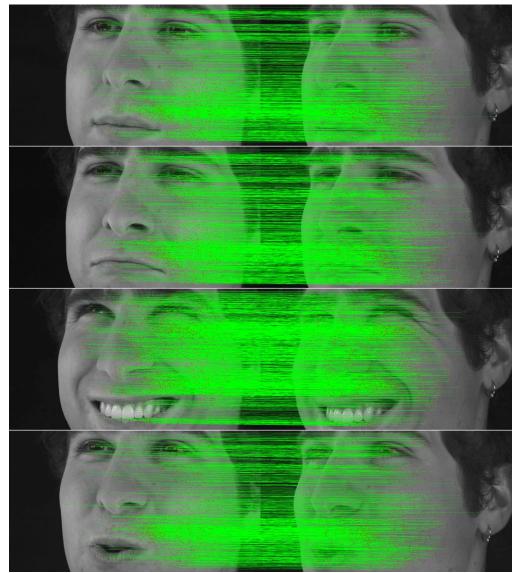
Table 3:	Skin	matching	results.
----------	------	----------	----------


Method	Avg. No. of inliers	Repeat -ability	No. of image pairs on which more than 20 inliers
LDAPSIFT	89.33	18.01%	102
PSIFT	73.86	14.89%	96
SIFT detector+PSIFT	25.94	5.95%	44
PSIFT detector+SIFT	8.65	1.74%	11
SIFT	3.66	0.79%	5

Experiments: Robustness Evaluation

Matching Difficulty Analysis

Outline

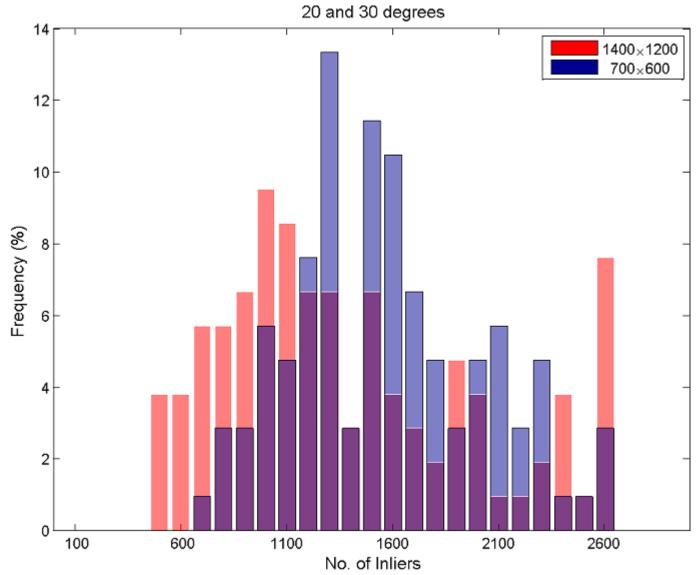

- Introduction
 - Motivation; state of the art.
- Distinctive features from pore-scale facial keypoints
 - Different scales of facial features; pore index and quantity-driven detection; relative-position descriptor.
- Face matching using pore-scale facial features
 - Candidate-constrained matching.
- Face verification using pore-scale facial features
 - Feature dimension reduction; feature matching and robust fitting; similarity measurement.
- Conclusions and applications
 - Facial Pores as a new biometric; Twins identification; Face recognition;
 Forensic

Candidate-constrained matching

- The region of candidates is constrained based on vertical coordinates or epipolar constraint.
 - The searching area is narrowed to 20% size of the whole face in the first matching.
 - In the 2nd matching, based on primary facial features and the estimated epipolar constraint, the one is narrowed to 5% size.
- The scale of candidates should be similar.

 $- 0.5 \leqslant |\sigma_2^j / \sigma_1^i| \leqslant 2$

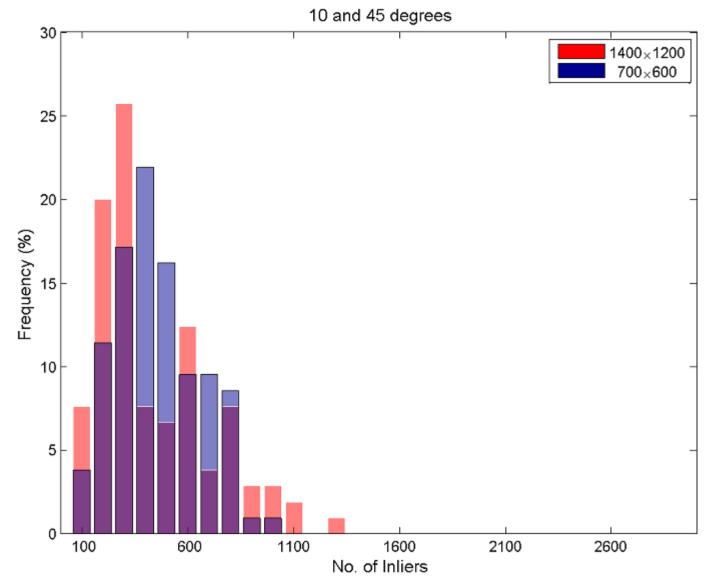
Face Matching Based on a Calibrated and Synchronized Dataset



Face Matching Based on a Calibrated and Synchronized Dataset

• The no. of inliers (Avg/Std) detected in each step of the matching process

Resolution	1,920 × 1,080		960×540	
Methods	Proposed	SIFT	Proposed	SIFT
Initial	1026.4/	177.7/	1431.3/	91.4/
Matching	189.5	37.5	171.3	20.1
After	691.4/	107.8/	920.5/	51.6/
RANSAC	121.6	30.1	90.0	14.9
Ground	688.2/	107.4/	915.1/	50.8/
truth	122.1	30.1	90.0	15.0
2nd Match-	1390.2/	N/A	1649.5/	N/A
ing	238.7		214.7	
After 2nd	1191.4/	N/A	1377.6/	N/A
RANSAC	202.4		146.0	
Ground	1156.5/	N/A	1338.8/	N/A
truth	193.1		139.3	

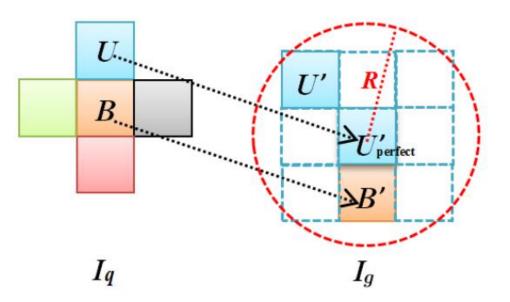

Face Matching Based on an Unsynchronized Dataset

Face Matching Based on an Unsynchronized Dataset

Face Matching Based on an Unsynchronized Dataset

Face Matching Based on Twins Images

Outline

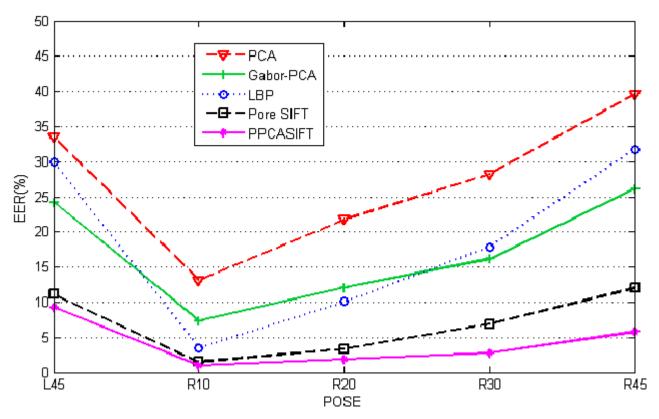

- Introduction
 - Motivation; state of the art.
- Distinctive features from pore-scale facial keypoints
 - Different scales of facial features; pore index and quantity-driven detection; relative-position descriptor.
- Face matching using pore-scale facial features
 - Candidate-constrained matching.
- Face verification using pore-scale facial features
 - Feature dimension reduction; feature matching and robust fitting; similarity measurement.
- Conclusions and applications
 - Facial Pores as a new biometric; Twins identification; Face recognition;
 Forensic

Feature dimension reduction

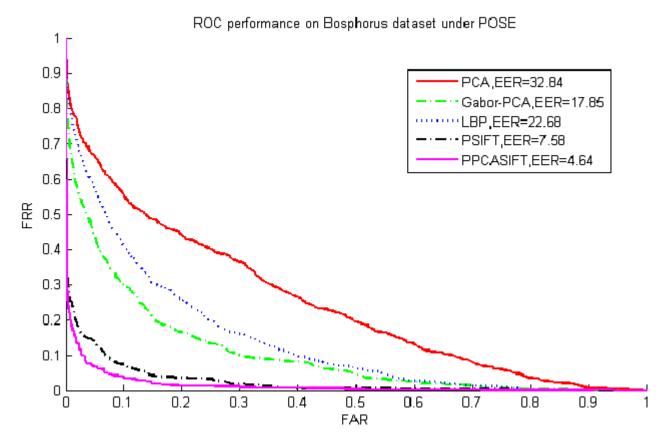
- Based on 16 face images from 4 subjects with different skin appearances
- Extract about 90,000 patches, 41x41 size
- Calculate horizontal and vertical gradient, so each training vector is 2x39x39=3,042 elements
- Then, PCA is applied
- The 72 leading eigen-vectors are used to form the projection matrix (3,042x72)
- The PSIFT is 512d, and the PPCASIFT is only 72d

Robust fitting

- RANSAC is not suitable for expression variance.
- Transfer the keypoint correspondences to block-based correspondences.
- The line connecting two correctly matched blocks *BB*' in the two face images should be approximately parallel to the other lines *UU*' of the corresponding neighboring blocks.



Similarity measurement


Face verification with pose variations

• Bosphorus dataset, 105 subjects, 1 as gallery other 5 poses as testing per subject

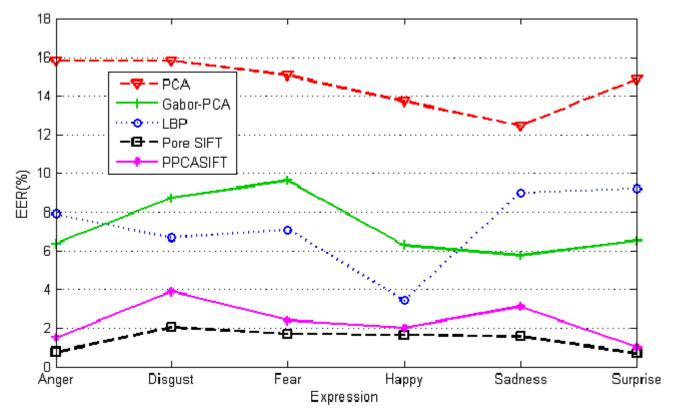
Face verification with pose variations

• Bosphorus dataset, 105 subjects, 1 as gallery other 5 poses as testing per subject

Face verification with pose variations

PPCASIFT

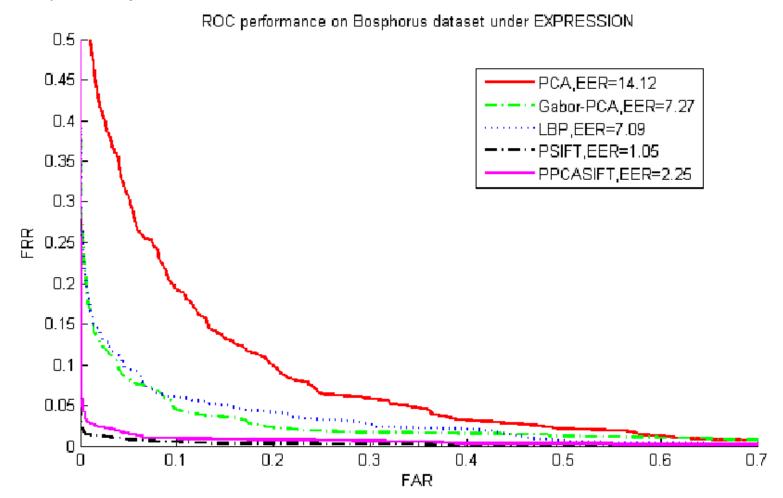
PSIFT


Gabor

R10 R20 R30 R45

Distance matrices

Face verification under different expressions


• Bosphorus dataset, 105 subjects, 1 as gallery other 6 emotions as testing per subject

EER of comparing methods under different expressions.

Face verification under different expressions

• Bosphorus dataset, 105 subjects, 1 as gallery other 6 emotions as testing per subject

Face verification on face images captured at different time sessions

- FRGC v2, 362 subjects, 9,844 images, 1 gallery per subject
- Captured time from 0 to 430 days

T-All	14.24	2.83	5.09	0.91	1.29
FRGC-0-2W	15.6	4.21	8.28	2.01	3.3
FRGC-3-10W	27.11	9.67	12.87	4.25	6.75
FRGC-11-18W	33.63	12.05	16.23	6.32	8.21
FRGC-19-26W	28.94	9.62	14.2	5.6	7.7
FRGC-Aft26W	28.75	14.26	18.09	8.11	10.55
FRGC-All	27.57	10.02	14.12	5.51	7.36

Table 5.2: EER(%) of different face-verification methods

Alignment errors

(a)

(b)

σ of $(\Delta x, \Delta y)$	Equal Error Rate(%)					
	PCA	Gabor+PCA	LBP	PSIFT	PPCASIFT	
0	14.12	7.27	7.61	0.77	1.94	
10	15.23	7.35	7.89	0.73	2.20	
20	19.49	9.38	13.88	0.87	2.12	
30	21.86	14.06	21.98	0.79	2.59	
40	24.90	16.97	25.22	0.63	2.30	
50	29.13	22.97	31.06	0.97	2.60	

Computational cost

- Each query (using 64bit Matlab R2010b on Intel Core i7 3.5GHz, 4 cores , 8 threads, 8GB RAM system).
 - PSIFT 1.42s
 - PPCASIFT 0.03s

Conclusions

- Contributions of this thesis
 - A new framework has been proposed for pore-scale facial feature extraction.
 - Reliable matching can be established based on uncalibrated face images.
 - Pore Index is proposed to analyze the relationship among the skin appearance, the image quality and the matching difficulty.
 - An alignment-robust and pose-invariant face verification method has been proposed using the HR information based on the pore-scale facial features.

Future work

- Better (distinctive, compact) features based on learning
- Skin feature as a new biometric measure
- Fusion of low-resolution features
- 3D face reconstruction

More Applications

- 电影动画
- 皮肤医疗图像
- 移动支付,刷脸支付,远程开户
- 防替考,入场认证
- 法庭证据, 群体事件监控与取证
- 反恐,国家安全

Q & A