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Background

« Optimization is everywhere

Compressed Sensing: min ||z||;, s.t. Az =0.
RPCA w/ Missing Value: min ||Al|. + A||E||1, st ma(A+FE)=d.
LASSO: min ||Az — b2, s.t. |z|1 <=e.

Image Restoration: min ||Az — b||3 + \||Vz||1, s.t. 0<=z <= 255.

Covariance Selection: rr;}n tr(XX) — log(det(X)) + pe’ | X]e,

st. X €8), where Sy ={X = 0| Amind < X < Amax!}

Pose Estimation: rrgn tr(WQ), st tr(4;,Q)=0,i=1,---,m,

Q = 0,rank(Q) <= 1.



Alternating Direction Method
(ADM)

Model Problem:

)EHXDQ f1(x1) + fa(x2),

B Augmented
st. Ai (Xl) + A; (X2> = b, Lagrangian Function

where f; are convex functions and A; are linear mappings. /

~

L(x1,%2,\) = fi(x1)+ fa(x2) + (A, A1(x1) + A2(x2) — b)
+2)| A1 (x1) + As(x2) — bl|2,

x"1 = argmin £(x1, x5, \F),

R <— Assume: Easy
xst = argmin £(xFT xg, AF),

X2
AL = \F + B [.Al (X]f—'_l) + AQ(XS—H) — b]

Update [



Linearized Alternating Direction
Method (LADM)

XIf—H = argrr}lcilnfl(xl) -+ %—kHAl(Xl) + AQ(XS) —b -+ )\k/ﬁkHQ,
XS—H = argn;lcin fg(Xg) -+ g—kHAQ(X]f—i_l) + AQ(XQ) —b + )\k/ﬁkHQ
. B . b
min f1,(x) + 5IIX—WH% min f>(x) + gl\x—WII%

/ t T
Proximal arg min HXH1 + gHX — W ‘2 — 7'5—1(“7)7 /

Operation g >
T-(x) = sgn(x) max(|z| — &, 0). /

argmin || X + X =Wl = 0. (W) =UTes(S)V7,

where W = USV! is the singular value decomposition (SVD) of W.
Lin et al., Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation, NIPS 2011.



Linearized Alternating Direction
Method (LADM)

Introducing auxiliary variables:

min f1(x1) + fa(x2),

X1,X2,X3,X4
s.t. X1 = X3,X9 = X4, ./41 (Xg) + AQ(X4) = b.

~

£(X17 X2,X3,X4, )\17 )\27 >\3)
= fi(x1) + fa(x2) + (A1, X1 — x3) + (A2, X2 — X4) + (A3, A1(x3) + A2(x4) — b)
+2 (IIx1 — x3[|% + [[x2 — xa]|% + || A1 (x3) + A2(x4) — b||)
Three drawbacks:
1. More blocks — more memory & slower convergence.

2. Matrix inversion is expensive.

3. Convergence is NOT guaranteed!

Lin et al., Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation, NIPS 2011.



Linearized Alternating Direction
Method (LADM)

xy T = afgfgl{ilnfl(xl) + 25| Ay (x1) + A2 (x5) — b+ A /B2,
x; ' = argmin fo(xa) + [ A0 + Az (x2) — b+ A/ B
y 2 4 6 2
min f1(x) + Flx - wlF]  in o) + 5 — w3

* Linearize the quadratic term

x{tt = arg min fi(x1) + (AT (k) + BeA; (A (x}) + Az(x5) — b), x1 — xF)
B |, — xk|? - - Adjoint
= arg mm fi (xl) I<A (@),y) = @, Aw)), Ve yl% Operator
+ﬁ’““ 1 — % + A7 (A + Be(Ar (xF) + A2 (xF) — b)) /(Bem) |12,
x5 = arg mm fa(x2)

8]y — 3k A3 (v B (AL ) + Ag(xE) — b))/ (B

Lin et al., Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation, NIPS 2011.



LADM with Adaptive Penalty
(LADMAP)

Theorem: If {3} is non-decreasing and upper bounded, n; > || A;l|?, i =
1,2, then the sequence {(x¥,x5, \;)} converges to a KKT point of the model
problem.

Lin et al., Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation, NIPS 2011.



LADM with Adaptive Penalty
(LADMAP)

* Adaptive Penalty

xitt = argmmfl(xl)

O ey — A O+ B (s (o) + As(oh) — ) /(B I,
xp Tt = arg min fo(x2)

252 32 — x5 + A5 (e + Br (Ar (x ) + Ax(x5) — b)) /(Bura) 1>

Y
—Brm (x7 = xF) — AF (A + Be(AL(x]) + A2 (xF) — b)) € 9f1(x1T)
—Brna (x5 —x5) — A5 (A + Br(AL(x]T) + Az (x5) — b)) € 9fa(x5H)
KKT condition: 3(x*,y*, A*) such that

Av(x}) + Az(x3) — b = 0,
—AL(V) €01 (x7), —AS(NY) € Dfa(x3):

Lin et al., Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation, NIPS 2011.



LADM with Adaptive Penalty
(LADMAP)

Both By [|xy ™ —xF|/[[.47 (b)|| and Byrpe||x5 ™ —x5]|/[.A3(b) || should be small.

n = |A|*? = Approximate ||Af(b)|| by /7| b|

« Adaptive Penalty
ﬁk—i—l — min(ﬁmax; pﬁk)a

b= { po, if B max(ymillxy ™ — xf|r, llxs T = x| F)/|IbllF < e,
1, otherwise,

where py > 1 is a constant.

* Loop until

| AL (x5 + Ao (x5T1) — b|p < e,

Br max(y/mr]lx; " = xfl| 7, izlxs T — x5 ])/IbllF < eo.
Lin et al., Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation, NIPS 2011.



LADM with Adaptive Penalty
(LADMAP)

* Choice of parameters

1. By = aes, where a  the size of b. Gy should not be too large, so that G
increases in the first few iterations.

2. po > 1should be chosen such that gy increases steadily (but not necessarily
every iteration).

g

I,_l—

k

Lin et al., Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation, NIPS 2011.



LADM with Adaptive Penalty
(LADMAP)

* An example (LRR):

win || Z]. + gl By, st X=XZ+E.
A(Z)=XZ, AyE)=E.

A(2)=XTZ, AY(E)=E,m =||X3m =1

Lin et al., Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation, NIPS 2011.



Table 1: Comparison among APG, ADM, LADM and LADMAP on the syn-
thetic data. For each quadruple (s, p, d, 7), the LRR problem, with x4 = 0.1, was
solved for the same data using different algorithms. We present typical running
time (in x103 seconds), iteration number, relative error (%) of output solution

Experiment

(B, Z) and the clustering accuracy (%) of tested algorithms, respectively.

Size (s, p, d, 7) | Method Time | Iter. ”ﬁ;()z”o“ ”E@(}J?‘HOH Acc.
APG 0.0332 110 2.2079 1.5096 81.5

ADM 0.0529 176 0.5491 0.5093 90.0

(10, 20,200, 5) LADM 0.0603 194 | 0.5480 | 0.5024 | 90.0
LADMAP | 0.0145 46 0.5480 | 0.5024 | 90.0

APG 0.0869 106 2.4824 1.0341 80.0

ADM 0.1526 185 0.6519 0.4078 83.7

(15, 20,300, 5) LADM 0.2943 363 | 0.6518 | 0.4076 | 86.7
LADMAP | 0.0336 41 0.6518 | 0.4076 | 86.7

APG 1.8837 117 2.8905 2.4017 72.4

ADM 3.7139 225 1.1191 1.0170 80.0

(20, 25, 500, 5) | LADM | 8.1574 | 508 | 0.6379 | 0.4268 | 80.0
LADMAP | 0.7762 40 0.6379 | 0.4268 | 84.6

APG 6.1252 116 3.0667 0.9199 69.4

ADM 11.7185 | 220 0.6865 0.4866 76.0

(30,30,900,5) | LADM | N.A. |NA. | NA | NA | NA.
LADMAP | 2.3891 44 0.6864 | 0.4294 | 80.1




LADM with Parallel Splitting and
Adaptive Penalty (LADMPSAP)

* Model problem:

o un Zn:fi(xi)a ZA X;) =

1
min | X||« + —||b — Po(X)||*, st. X >0,
X 2

U
win Xl + %He”z, st b=Po(X)+e X >0,
J
)gn‘l(n X« + —||e||2 s.t. lﬁz Pa(Y)+e, X=Y, Y >0,

)gnslf_n X ||« + —HeH2 +xy>0(Y), st. b=Pq(Y)+e, X=Y.

Lin et al., Linearized Alternatzng Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex
Programs in Machine Learning, ML, 2015.



LADM with Parallel Splitting and
Adaptive Penalty (LADMPSAP)

* Can we naively generalize two-block LADMAP for multi-block
problems?

No!

Actually, the naive generalization of LADMAP may be divergent, e.g., when
applied to the following problem with n > 5:

n

n
min Z |x;ll1, s.t. Z A;x; =Db.
X1y Xn i—1

1=1

Lin et al., Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex
Programs in Machine Learning, ML, 2015.

C. Chen et al. The Direct Extension of ADMM for Multi-block Convex Minimization Problems is Not Necessarily
Convergent. Preprint.



LADM with Parallel Splitting and
Adaptive Penalty (LADMPSAP)

2
x* T = argmin fi(xi)erfk x; — x° + A’ ()\k’ + Bk ZAZ(X;“) — b)) /(G|
i=1em, i (’““)+ZA( )
)\kz—l—l L )\k: —I_ﬁk: (ZA k—{—l )
=1 Parallel!
5k3—|—1 mln(ﬁmaxa pﬁk
where

. { po, if By max ({77 ||x" — x5 i=1,--,n}) /b < e

1, otherwise,

with pp > 1 being a constant and 0 < €5 < 1 being a threshold.

Lin et al., Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex
Programs in Machine Learning, ML, 2015.



LADM with Parallel Splitting and
Adaptive Penalty (LADMPSAP)

Theorem: If {3;} is non-decreasing and upper bounded,| n; > n||A;||* i =
1,---,n, then {({x¥}, \¥)} generated by LADMPSAP converges to a KKT point

of the problem.

Remark: When n = 2, LADMPSAP is weaker than LADMAP:

mi > 2| A7 vs. mp > [|Ai]]7

* Related work: He & Yuan, Linearized Alternating Direction Method with
Gaussian Back Substitution for Separable Convex Programming, preprint.

Lin et al., Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex
Programs in Machine Learning, ML, 2015.



LADM with Parallel Splitting and
Adaptive Penalty (LADMPSAP)

* Model problem:

Xll:nmanfz X;), s.t. ZA x;)=b, x; € X;,i=1,--- ,n,

=1

where X; C R% is a closed convex set.

mln Zf@ X’l, —|_ E XXIEXz n X’[, 9 St A XZ b7Xi:XTL—|—i7i:1,°" 7/n“
X1, ,X2n 2 :
) i=n+1
Theorem: If {{;} is non-decreasing and upper bounded, X, 11, - ,X2, are

auxiliary variables, n; > n||A:]|? + 2, Dnis > 2,4 = 1,--- ,n}, then {({xF}, \¥)}
generated by LADMPSAP converges to a KK'T point of the problem.
Ui 272,(”./4,&“2 + 1)777n—|—i > 2”77' — 17 e, N

Lin et al., Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex
Programs in Machine Learning, ML, 2015.




Experiment

1
min | X||« + —||b — Po(X)||*, st. X >0,
X 20

4

1 2
min || X[ + —]le|* + Y), st. b=Po(Y)+e, X=Y.
i X[l + 5 llell” +xy20(Y), st b=Pa(Y)+e

(a) Original (b) Corrupted (c) FPCA (d) LADM (e) LADMPSAP

Lin et al., Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex
Programs in Machine Learning, ML, 2015.



Experiment

Table 1: Numerical comparison on the NMC problem with synthetic data, aver-
age of 10 runs. ¢, t and d,- denote, respectively, sample ratio, the number of mea-
surements ¢ = g(mn) and the “degree of freedom” defined by d, = r(m+n —r)
for a matrix with rank r» and ¢q. Here we set m = n and fix » = 10 in all the

tests.
X LADM LADMPSAP
n q t/d, Iter. | Time(s) | RelErr FA Iter. | Time(s) | RelErr | FA
1000 20% 1 10.05 || 375 177.92 | 1.35E-5 | 6.21E-4 58 24.94 967E-6 | 0
10% | 5.03 1000 | 459.70 | 4.60E-5 | 6.50E-4 || 109 42.68 1.72E-5 | 0
5000 20% | 50.05 || 229 | 1613.68 | 1.08E-5 | 1.93E-4 49 369.96 | 9.05E-6 | 0
10% | 25.03 539 2028.14 | 1.20E-5 | 7.70E-5 89 365.26 9.76E-6 0
10000 | 10% | 50.03 463 6679.59 | 1.11E-5 | 4.18E-5 89 1584.39 | 1.03E-5 0

Table 1: Numerical comparison on the image inpainting problem.

Method || #Iter. | Time(s) | PSNR | FA

FPCA 179 228.99 | 27.77dB | 9.41E-4

LADM 228 207.95 | 26.98dB | 2.92E-3
LADMPSAP 143 134.89 | 31.39dB 0

Lin et al., Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex

Programs in Machine Learning, ML, 2015.



LADM with Parallel Splitting and
Adaptive Penalty (LADMPSAP)

Enhanced convergence results:

+00
Theorem 1: If {3} is non-decreasing and > B, ' = +oo, m; > n|A|?,

k=1

Of;(x) is bounded| i = 1, - ,n, then the sequence {x"} generated by LADMP-

SAP converges to an optimal solution to the model problem.

Theorem 2: If {8} is non-decreasing, n; > nl|A;ll?,

J0fi(x) is bounded,

“+00
i=1,---,n, then ) 5, ! = 40 is also the necessary condition for the global
k=1

convergence of {x*} generated by LADMPSAP to an optimal solution to the

model problem.

With the above analysis, when all the subgradients of the component objective
functions are bounded we can remove the upper bound (G.x.

Lin et al., Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex

Programs in Machine Learning, ML, 2015.




LADM with Parallel Splitting and
Adaptive Penalty (LADMPSAP)

Define x = (xf, - ,xD)T, x* = ((x)7, -, (3)")" and f(x) = 3 filxa),
i=1

where (x7,---,x3,\*) is a KKT point of the model problem.

Proposition: x is an optimal solution to the model problem iff there exists
a > 0, such that

n

D Ai(%x) - b

1=1

FR) = FO) + D (AT V) % —xi) +a ~0.

Our criterion for checking the optimality of a solution is much simpler than that
in He et al. 2011, which has to compare with all (x1,---,X,,A) € R% x ... x
R x R™.,

Lin et al., Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex
Programs in Machine Learning, ML, 2015.
B. S. He and X. Yuan. On the O(1/t) convergence rate of alternating direction method. Preprint, 2011.



LADM with Parallel Splitting and
Adaptive Penalty (LADMPSAP)

K K
Theorem 3: Define XX = Y v, x**1, where 1, = 8, '/ . ﬁj_l. Then
k=0 §=0

n 2

FER) 1) 430 (AT (), % — xi)+- 20
1=1

<= Co/ <2Zﬁkz1> ,

(1)
_ A% -

where o= ! = (n+1) max | 1, ,t=1,---,n and Cy = i Xg_x;;k

" ( {mnw o=

652 (|A0 = A"

2

A much simpler proof of convergence rate (in ergodic sense)!

Lin et al., Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex
Programs in Machine Learning, ML, 2015.
B. S. He and X. Yuan. On the O(1/t) convergence rate of alternating direction method. Preprint, 2011.



Proximal LADMPSAJP

* Even more general problem:

n

. i (X5 ), .. A;i(x;) = b.

min ;f (xi), ; ()
fi(x:) = gi(x3) + hi(x;),

where both g; and h; are convex, g; is C*1:

IVgi(x) = Vo)l <= Lillx —yll, Va,y € R,

and h; may not be differentiable but its proximal operation is easily solvable.



Proximal LADMPSAP

* Linearize the augmented term to obtain:

(k) . 2
xf’“ :argminhi(xi)+gi(xi)+022 |xz- —xf—kAj()\k)/agk)‘ ., i=1,---,n,
 Further linearize g;:
O'(k) o k 2
X1 = argminh(x,) + g:(xt) + T AT /oY)
| A ) 2
H(Vgs(x§) + ATF), x; = xb) + L [l — x|
: 7" k1 Atk ol
= argmin h;(x;) + 5 || X — X; T W[Aio\ ) + Vgi(x7)]

* Convergence condition:

Tz'(k) = T;+Bkn;, where T; > L; and 1; > n||.A;||? are both positive constants.



Experiment

* Group Sparse Logistic Regression with Overlap

t
T
I?vl?s;log (1+ exp (—yi(w'x; + b)) +MZ_:IISJWH, (1)

where x; and y;, 2 = 1,--- , s, are the training data and labels, respectively, and
w and b parameterize the linear classifier. S;, 7 = 1,---,¢, are the selection
matrices, with only one 1 at each row and the rest entries are all zeros. The
groups of entries, S;w, j = 1,--- ,¢, may overlap each other.

Introducing w = (wl,b)?, x; = (xI',1)I', z = (zi,2L,.--- ,2z])!, and S =
(S,0), where S = (S1,---,S1)?T, (1) can be rewritten as

min — Zlog (1 +exp (—yi(Ww'x;)) —I—,uz |z;]|, st. z=Sw, (2)

W,z S

The Lipschitz constant of the gradient of logistic function with respect to w
can be proven to be Ly - +=[|X]|3, where X = (X1,%2, - , Xs).



Experiment

Method

Time

#lIter.

(37 D, t, C]) T

ADM 504.15 | 43 | 0.4800 | 0.4790

LADM 290.03 | 43 | 0.5331 | 0.5320

LADMPS 10550 | 47 | 0.2088 | 0.2004

(300, 901,100, 10) | y xpmpsap | 5746 | 30 | 00371 | 0.0368
PLADMPSAP | 1.97 | 141 | 0.0112 | 0.0112

ADM 15096 | 33 | 0.4337 | 0.4343

LADM 43712 | 36 | 05126 | 0.5133

LADMPS | 20130 | 39 | 01938 | 0.1937

(450, 1351, 150, 15) | 1 v yvipsap || 136.64 | 37 | 0.0321 | 0.0306
pLADMPSAP | 4.16 | 150 | 0.0131 | 0.0131

ADM T617.09 | 62 | 1.4299 | 1.4365

LADM 1486.23 | 63 | 1.5200 | 1.5279

LADMPS || 49452 | 46 | 04915 | 0.4936

(600, 1801, 200, 20) | v pyvipsaP || 21645 | 32 | 0.0787 | 0.0783
pLADMPSAP | 5.77 | 127 | 0.0276 | 0.0277




Conclusions

« LADMAP, LADMPSAP, and P-LADMPSAP are very
general methods for solving various convex programs.

* Adaptive penalty is important for fast convergence.



Thanks!

* zlin@pku.edu.cn

— http:/ /www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm
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