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A Probabilistic PC Chair Model
# Arrange a set of invited talks, e.g., A, B, C, D

o A uniform permutation model

e

P([A,C,B, D)) = P({A,D,C,B]) = --- = —




A Probabilistic PC Chair Model

# Arrange a set of invited talks

o With a preferred list
PC chairs offer a concentration center 1y = [C, B, A, D)|

A generalized Mallows model is defined
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A Probabilistic PC Chair Model

# Arrange a set of invited talks
o Prior knowledge

conjugate prior exists for generalized Mallows models

o Bayesian updates can be done with Bayes’ rule




A Probabilistic PC Chair Model

# Arrange a set of invited talks

o Side constraints
Mike Jordan can only spend 2 days at ICML
Eric Horvitz can only spend 1 day at ICML
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# How can we consider them?

o Lets’ do optimization?

a How about ifBayesian?




What’s Bayes &Why be Bayesian?




Bayesian Inference

# A coherent framework of dealing with uncertainties

C pxM)m(M)
X[ M)m(M)dM

p(M]x)

* M: a model from some hypothesis space

* x: observed data TGy T
Thomas Bayes (1702 — 1761)

& Bayes’ rule offers a mathernatically rigorous computational
mechanism for combining prior knowledge with incoming
evidence




Parametric Bayesian Inference

M is represented as a finite set of parameters §

# A parametric likelihood: x ~ p(+|0)
# Prior on 8: 7(0)

# Posterior distribution

p(x[0)m (6
Olx) = x p(x|0)m (0
Examples:
* Gaussian distribution prior + 2D Gaussian likelihood — Gaussian posterior distribution

* Dirichilet distribution prior + 2D Multinomial likelihood = Dirichlet posterior distribution

. Sparsity-inducing priors + some likelihood models - Sparse Bayesian inference




Nonparametric Bayesian Inference

M is aricher model, e.g., with an infinite set of parameters

# A nonparametric likelihood: x ~ p(-|M)
# Prior on M: n(M)

# Posterior distribution

_ pxM)n(M)
pMI) = e i  PMIm(M)

Examples:

— see next slide




Nonparametric Bayesian Inference

binary matrix |z

probability measure

Indian Buffet Process Prior [Griffiths & Gharamani, 2005]
+ Gaussian/ Sigmoid/Softmax likelihood

Dirichlet Process Prior [Ferguson, 1973]
+ Multinomial/ Gaussian/ Softmax likelihood

function

-2

0 05 1
input, x

Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006]
+ Gaussian/ Sigmoid/Softmax likelihood




Why Bayesian Nonparametrics?

Let the data speak for itself

# Bypass the model selection problem

a let data determine model complexity (e.g., the number of
components in mixture models)

o allow model complexity to grow as more data observed
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® The world is structured and dynamic!

& Predictor-dependent processes to handle heterogeneous data
o Dependent Dirichlet Process (MacEachern, 1999)
o Dependent Indian Buffet Process (Williamson et al., 2010)

a

# Correlation structures to relax exchangeability:
o Processes with hierarchical structures (Teh et al., 2007)
o Processes with temporal or spatial dependencies (Beal et al., 2002; Blei & Frazier, 2010)

o Processes with stochastic ordering dependencies (Hoff et al., 2003; Dunson & Peddada,
2007)

a




Why be Bayesian?
# One of many answers

# Infinite Exchangeability:

Vn, Vo, p(z1,...,2n) = p(To@),-- > Ta(n))

# De Finetti’'s Theorem (1955): it (x1,22,...) are infinitely
exchangeable, then ¥n

n

P, ... 1) = / (TIp(il0))ap (o)

i=1
for some random variable 9

N

P
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Bayes' Theorem in the 21st Century
& 2013 marks the 250t Anniversary of Bayes’ theorem

® Bradley Efron, Science 7 June 2013: Vol. 340 no. 6137 pp- 1177-

“There are two potent arrows

in the statistician’s quiver

there is no need to g0 hunting

armed with only one.”




singhua University

Overfitting in Big Data

# “with more data overfitting is becoming less of a concern”?
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One layer

1 9 layers sparse autoencoder with:
Input to another layer above -local receptive fields to scale up;
(image with 8 channels) - local 1.2 pooling and local contrast normalization for
Number of output . . f
channels = 8 Invariant reatures
- 1B parameters (connections)
- 10M 200x200 images
- train with 1K machines (16K cores) for 3 days
Number
; of maps = 8 -able to build high-level concepts, e.g., cat faces and
" \ Number of input human bodies

Overfitting in Big Data
“Big Model + Big Data + Big/ Super Cluster”

Big Learning

channels = 3 -15.8% accuracy in recognizing 22K objects (70%

Image Size = 200 relative improvements) /




Overfitting in Big Data

# Predictive information grows slower than the amount of

Shannon entropy (Bialek et al., 2001)

T 0= fixed J
-& - variable J, short range interactions
Al & yariable J's, long range decaying interactions |
— fits
i S,=const +const, N
4t
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Tsinghua University

Overfitting in Big Data

# Predictive information grows slower than the amount of

Shannon entropy (Bialek et al., 2001)

VOLUME
VARIETY
VELOCITY
VALUE

DATA SIZE

A
®
o

Model capacity grows faster than the amount of
predictive information!




Overfitting in Big Data

# Surprisingly, regularization to prevent overfitting is

increasingly important, rather than increasingly irrelevant!

# Increasing research attention, e.g., dropout training (Hinton,

2012)

r =m.xa(Wv)

# More theoretical understanding and extensions

o MCEF (van der Maaten et al., 2013); Logistic-loss (Wager et al.,
2013); Dropout SVM (Chen, Zhu et al., 2014)




Therefore ...

@ Computationally efficient Bayesian models are becoming

increasingly relevant in Big data era

o Relevant: high capacity models need a protection

o Efficient: need to deal with large data volumes




Challenges of Bayesian Inference

Building an Automated Statistician

& Modeling
o scientific and engineering data

o rich side information

# Inference/ learning
o discriminative learning

0 large—scale inference algorithms for Big Data

4 Applications
o social media

0 adaptation




Regularized Bayesian Inference




Regularized Bayesian Inference?

posterior likelihood model prior
T~ /
e = M)
| p(x|M)T(M)dM

# How to consider side constraints?

Not obvious!

soft constraints

hard constraints (many feasible subspaces with different

(A single feasible space)

complexities/penalties)




Bayesian Inference as an Opt. Problem

Wisdom never forgets that all things have two sides

 p(x[M)T(M)
PIMIX) = T M) (M) dM

& Bayes’ rule 1s equivalent to solving:

min KL(g(M)||7(M)) = Eq(rr) [log p(x| M)]

s.t.: g(M) € Pprob,

/

direct but trivial constraints on posterior distribution




Regularized Bayesian Inference

Constraints can encode rich structures/ knowledge

& Bayesian inference with posterior regularization:

¢ . b .
unconstrained equlvalence:

min - KL((M) [7(M)) ~ Eyaq) o5 plx| M)] + Q(g(M)

s.t. 1 g(M) € Pprob, /

posterior regularization

o Consider both hard and soft constraints
a Convex optimization problem with nice properties

o Can be effectively solved with convex duality theory

[Zhu, Chen, & Xing, JMLR, in press, 2014y




A High-Level Comparison

prior likelihood
distribution model

Bayes:
Bayes’ Rule
posterior
distribution
RegBayes:

likelihood posterior
model regularization

a

prior
distribution

Optimization

posterior
distribution




More Properties

# Representation Theorem:
a the optimum distribution is:
i3(M) = p(M, D) exp(($,1(M; D)) — A)

o where ¢ is the solution of the convex dual problem

@ Putting constraints on priors 1S a special case

o constraints on priors are special cases of posterior regularization

# RegBayes is more flexible than Bayes’ rule

o exist some RegBayes distribution: no irnplicit prior and

likelihood that give back it by Bayes’ rule

[Zhu, Chen, & Xing, JMLR, in press, 2014y




Ways to Derive Posterior Regularization

# From learning objectives
o Performance of posterior distribution can be evaluated when
applying it to a learning task

o Learning objective can be formulated as Pos. Reg.

# From domain knowledge
a Elicit expert knowledge

a E.g., first-order logic rules

4 Others ...

o E.g, decision mal(ing, cognitive constraints, etc.




Adaptive, Discriminative, Scalable
Representation Learning




Input Data

Ideal paradigm that
computers help solve
big data problems

Inference, Decision, Reasoning
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e

Lovely welcomming staff, good rooms that give a good
nights sleep, downtown location
Meramees Hostel

? 0000e
SheikhSahib @ 10 contributions
Landaon
B Jul 7, 2009 | Trip type: Friends getaway
This hotel is just of the side streets of Talat Harh, one of the main
arteries to downtown Cairo. It is walking distance to the Nile,
riverfront hotels, Egyptian Museum, and there are many eateries in

the area at night when it is still bustling. Only a short cab ride away
from the Qld Fatimid Caira,

The staff are young and very friendly and able to sort out things like
mohile chargers, internet, and they have skype installed on their
computers which is brilliant. The rooms are nicer then the Luna
(nearby) and much guister as well,

My ratings for this hotel

Value
Rooms
Location
Cleanliness

@E@E@® Service

Date of stay February 2009
Visit was for Leisure

Traveled with with Friends

Member since July 03, 200
‘Would you recommend thi

Axis's of a semantic representation space:

T1

Learning
>
Algorithms

E.g., Topic Models

—>

Representation Learning

T2

told place

dirty hotel
room room
front days
——>  asked time
hotel day

bad night

small people
worst stay
poor water

called rooms
rude food

Learning

Algorithrns

E.g., Deep Networks

Tsinghua University

T3 T4 T5 T6

hotel hotel beach beach
food area pool resort
bar staff resort pool
day pool food ocean
pool breakfast island island
time day kids kids
service view trip good
holiday location service restaurants
room service day enjoyed
people walk staff loved
mght time me trip

I‘f‘.-)..
',\01. ~'.‘
.\.'.‘-'*ﬂ‘l!
B = ‘ud

[Figures from (Lee et al. ICML2009)]

T7

great
good
nice
lovely
beautiful
excellent
wonderful
comfortable
beach
friendly
fresh

amazing

/




Some Key Issues

# Discriminative Ability

o Are the representations good at solving a task, e.g., distinguishing

different concepts?
o Can they generalize well to unseen data?

o Can the learning process effectively incorporates domain knowledge?

# Model Complexity
o How many dimensions are sufficient to fit a given data set?
o Can the models adapt when environments change?
# Sparsity/Interpretability
o Are the representations compact or casy to interpret?
# Scalability
o Can the algorithms scale up to Big Data applications?




Bayesian Latent Feature Models (finite

# A random finite binary latent feature models

7Tk|CVNBeta(%,1) 71 79 TH

Zik|mr ~ Bernoulli(my)

N -. -

a T is the relative probability of each feature being on

o giving the latent structure that’s used to generate the data, e.g,,

X; ~ N(UTZZ'_, 52)




Indian Buffet Process

# A stochastic process on infinite binary feature matrices

4 Generative procedure:
o Customer 1 chooses the first K; dishes: K7 ~ Poisson(a)

o Customer i chooses:

m
Each of the existing dishes with probability —k
(4

. 8
K ; additional dishes, where K; ~ POlSSOH(?)

cust 1: new dishes 1-3

cust 2: old dishes 1,3; new dishes 4-5

cust 3: old dishes 2,5; new dishes 6-8

Z ~IBP(«)

[Griffiths & Ghahramani, NIPS 2005]




Posterior Constraints — classification

# Suppose latent features z are given, we define latent

discriminant function:

f(x;2z,m) =n'z

# Detine effective discriminant function (reduce uncertainty):

[(x;9(Z,m)) = Eqzm[f (x,2;1)] = Eqzmy[n ' 2]

# Posterior constraints with max-margin principle

Vn € Tty yn f(xn;p(Z,m)) > 1 =&,

# Convex U function




The RegBayes Problem

min  L(g(Z, W,n) + 2c-R(q(4, W,
L (q( n) (g( n))

a where L(q) = KL(qH?T(Z,W,??)) — Eq[logp(X\Z,W)]

0 the hinge loss (posterior regularization) is

R(g) = > max(0,1 -y f(xn; ¢(Z,n))




Posterior Regularization with a Gibbs Classifier
# Posterior distribution to learn

q(Z,n)

# Gibbs classifier randomly draws a sample to make prediction

(Z,m) ~ q(Z,n)

o For classification, we measure the loss of classifier (Z, n)

Z max(0,1 — y, f(xn; Z,n)

o It minimizes the expected loss

R'(q) = E, Z max(0, 1 — v, f(xn;Z,n)




Comparison
# Expected hinge—loss is an upper bound

R'(q) > R(q)

# For averaging classifier, the RegBayes problem is suitable for
variational inference with truncation (Zhu et al., JMLR 2014)

# For Gibbs classifier, the RegBayes problem is suitable for
MCMC without truncation




More Details on MCMC

# RegBayes problem

min  L(q(Z,W,n) +2c- R (q(Z, W,
e (q( n) (q( n))

# The solution is

m(Z, W, n)p(X|Z, W)o(y|Z,n)
V(X,y)

q(Z, W ,n) =

o where

¢(y|Z,m) Hsb (ynlZ,m) = | [ exp {—2cmax(0,1 — y,, f(xn; Z,m)}

n




More Details on MCMC

# Scale mixture representation: (, =1 — v, f(x,;Z,n)

> 1 An n :

a follows (Polson & Scott, 2011)

# Data augmentation representation

(2. W) = [ o2 W5, 2)x

m(Z, W,n)p(X|Z, W)d(y, \|Z,n)
P(X,y)

where q(Z, W,n,\) =

o(y,N2Z,n) = H \/erT exp (_ (An ;')\C(:n) )




More Details on MCMC

# Data augmented posterior

Z, W, n)p(X|Z,W)o(y,\Z,n)
(X, y)

-
Q(Z7W7 /)77 A) — (

# A Gibbs sampler is as follows
Q Sample n ~ 9(77|Z7W) )‘) X W(”)¢(Y> )\‘Za 77)

a Gaussian distribution if the prior is Gaussian
a Sample A ~ q(A|Z, W,n) x ¢(y, \|Z,n)
a generalized inverse Gaussian distribution
a Sample (Z, W) ~ ¢(Z, W|n,\) o< 7(Z, W)p(X|Z, W)o(y, A|Z,n)

Similar as the Gaussian infinite latent feature model (Grifﬁths &

Ghahramani, 2005)




PAC-Bayes Theory

# Theorem (Germain et al., 2009):

a for any distribution D ; for any set i of classifiers, for any

prior P, for any convex function
6: [0,1] % [0,1] = R

a for any posterior () , for any 0 € (O, 1] , the following
inequality holds with a high probability (> 1 — 9 )

¢ (Rs(Gq), R(Gq)) = % [KL(QHP) +1In (%N))]

o where C'(N) =Eg pvE;op [eNﬁb(RS(h)aR(h))]




RegBayes Classifiers

# PAC-Bayes theory

6 (Rs(Go), R(Ga)) < + [KL(QHP) +1In (_O ;V))]
# RegBayes inference

g%i{l} KL(q(H)[[p(H|x)) + 2(q(H))

s.t. 1 q(H) € Pprob,

# Observations:

o when the posterior regularization equals to (or upper bounds)

q(H)) = Rs(Gy)

o the RegBayes classifiers tend to have PAC-Bayes guarantees.

the empirical risk




Extensions to Multi-task Learning




Multi-task Learning (MTL)

# [Wikipedia] MTL is an approach to machine learning that learns
a problem together with other related problems, using a shared
representation

Multitask learning

Input mr‘: X 24
AT Do SRR 25 2 .l:"‘...
\ / Figure from Wikipedia
Author: Kilian Weinberger

Learning
Task

.

Target {dog,human}

# The goal of MTL is to improve the performance of learning
algorithms by learning classifiers for multiple tasks j ointly

# [t works particularly well if these tasks have some commonality

and are generally slightly under sampled



//upload.wikimedia.org/wikipedia/en/a/af/Multi_Task_Learning_Concept,_2010.jpg

Multi-task Representation Learning

& Assumption:

0 common underlying representation across tasks

# Representative works:

o ASO (alternating structure optimization): learn a small set of
shared features across tasks [Ando & Zhang, 2005]

o Convex feature learning via sparse norms [Argyriou et al.,

2006]




Basic Learning Paradigm

& Tasks: m=1--- M
# N examples per task

(X1, YUm1)s s (XN, Ymn) € RP x R
# Estimate

fo:RP SR Vm=1--- M

# Consider features
hl(X)a T hK(X)

# Predict using functions

f(X) =D s (x)




earning a Projection Matrix

& Tasks: m=1--- M
# N examples per task

(X1, YUm1)s s (XN, Ymn) € RP x R
# Estimate

fo:RP R Ym=1--- M

# Consider features

he(x)=2z,x, k=1, ,00

# Predict using functions (Z is a D x oo projection matrix)

X Z 77 ank nm(ZT )




Max-margin Posterior Regularizations

# Similar as in infinite latent SVMs

0 Averaging classifier

The hinge loss

R = 2 max (0, 1 — ymnEQ[fm(Xmm Zn)])

m,ncL”

a Gibbs classifier

R’ =E,

Z max (0, 1 — Ymn frn (Xmn; ZM))

m,neL?




Experimental Results

& Classification
o Accuracy and F1 scores on TRECVID2003 and Flickr image datasets

% 2%

Tsinghua University

TRECVID2003 Flickr
Model Accuracy F1 score Accuracy F1 score
EFH+SVM | 0.565+0.0  0.427+0.0 | 0476+ 0.0  0.461+ 0.0
MMH 0.566 £ 0.0  0.430+0.0 | 0.538+0.0 0.512+0.0
[BP+SVM [ 0.553 £ 0.013 0.397 £ 0.030 | 0.500 £ 0.004 0.477 £+ 0.009
iLSVM  10.563 £0.010 0.448 +£0.011 | 0.533 £0.005 0.510 £ 0.010

Crverall Avg Value

Fer-class Avg Value

Eeih e oW

class—1

class—4

class-2 ]
class—3 ||

class-5 |

Feature ID

30

&0




Experimental Results

4 Multi-label Classification (multiple binary classification)

a Accuracy and F1 scores (Micro & Macro) on Yeast and Scene datasets

Model Acc F1-Macro F1-Micro
YaXue [Xue et al., 2007] 0.5106 0.3897 0.4022
Piyushrai [Piyushrai et al., 2010] 0.5424 0.3946 0.4112

MT-iLSVM 0.5792 & 0.003 | 0.4258 & 0.005 | 0.4742 & 0.008
Gibbs MT-iLSVM 0.5851 & 0.005 | 0.4294 £ 0.005 | 0.4763 £ 0.006
Model Acc F1-Macro F1-Micro
YaXue [Xue et al., 2007] 0.7765 0.2669 0.2816
Piyushrai [Piyushrai et al., 2010] 0.7911 0.3214 0.3226

MT-LSVM

0.8752 = 0.004

0.5834 & 0.026

0.6148 = 0.020

Gibbs MT-ILSVM

0.8855 == 0.004

0.6494 &+ 0.011

0.6458 & 0.011




Experimental Results

# Multi-task Regression

2 School dataset (139 regression tasks) — a standard dataset for
evaluating multi-task learning

o Percentage of explained variance (higher, better)

35

Lt
=

CIMT-IBP+SYM
C—Jmr-1BP+sVIMt
CIMT-iLsvM
I Y i

Explained Variance (%)
P
[&y]

P
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~ Cluster )

Infinite SVMs

(Zhu et al., ICML'11)

Infinite Latent SVMs
(Zhu, et al., JMLR‘14)

RegBayes with Max-margin
Posterior Regularization

7
-
-~
b A

D e |
A \—4 Py
AE=—2

Nonparametric Max-margin Relational

Models for Social Link Prediction
(Zhu, ICML’12)

Ny

Max—margin Topics and Fast Inference

(Zhu, et al., JMLR’12; Zhu et al., JMLR’14)

k * Works from other groups are not included.

V)

Ul X (=] Y

Nonparametric Max—margin Matrix

Factorization
(Xu, Zhu, & Zhang, NIPS’12, ICML’13)

Multimodal Representation Learning
(Chen, Zhu, et al, PAMI'12)

/




# Goal of “Statistics + Knowledge”

# Incorporate domain knowledge into
Bayes models

o elicit informative priors

o RegBayes: posterior regularization via
FOL rules

# Resolve the uncertainty of domain
knowledge in FOL forms ==

w4 — s=lab

o A selective spike—and—slab prior E{L-

"'fﬂf. N

[Mei, Zhu & Zhu, ICML 2014]




Some Empirical Results

Test Set Perplexity

LDA Fold-all LogicLDA
COMP 1531412 153711 1463 +5
CON 1206%6 1535£+£10 1216 £11
POL 3218+ 13 32204+ 13 3176 £ 12
HDG 940 £+ 6 973 £ 7 885 + 2

Proportion of Satisfied Logic Rules

LDA

Fold-all

LogicLDA

0.00 £ 0.00
0.07 £ 0.04
1.00 £ 0.00
0.60 4 0.01

1.00 £ 0.00
0.67 £ 0.03
1.00 £ 0.00
0.95 £ 0.00

0.97 £ 0.01
0.70 £ 0.00
1.00 4 0.00
0.96 £+ 0.01

4 LDA: standard unsupervised topic model (Blei et al., 2003)
# Fold.all: hand-tuning rule weights by experts (Andrzejewski et al.,

2011)

/




Robustness to Unreliable Rules

Test Set Perplexity Satistaction Proportion

Histogram
© LogicLDA  RLogicLDA LogicLDA RLogicLDA

Lh 14674+ 6 1446 +6 03940.16 0.07 + 0.06

§’J L I 1228 +9 1228+ 16 0.49 £0.03 0.08 £0.03

# More results on interpretability of latent topics and

competitive prediction performance (Mei et al., 2014)




Scalable Algorithms




Online Learning Algorithms

# Works on a single machine; Explore data redundancy

# Scale up to infinite size data sets, especially for streaming
data

Online Bayesian Passive-Aggressive Learning

min KL[g(w)ll g, (w)] -, [log p(x, Iw)]
st.:l (gw);x,,y,)=0.

feasib]e zone. g.(w) feasjble zone.

(a) Passive update (b) Aggressive update
Performance is guaranteed with provable regret bounds.

[Shi & Zhu, ICML2014]




Online Learning Algorithms

# Works on a single machine

# Scale up to infinite size data sets, especially for streaming
data

Online Bayesian Passive-Aggressive Learning

* 1.1M Wiki pages (standard desktop)

[ —— paMedLDA-mt —=— paMedHDP-mt bMedLDA-mt =#=gMedLDA-mt bMedHDP-mt
0.6

F1 Score

o
1]

2

! ? 10° 10°* 10° 10°
Time (Seconds)

-
(=
i
]




F-Measure

0.6

0.55
0.57
045}
0471
0.35;
0.37
0.25F
0.2r
0.15F

0.1

Distributed Inference Algorithms

# Leverage big clusters

# Allow learning big models that can’t fit on a single machine

10°

..... e
AT T T LR .-
x L 4 - - =
10 _®
ﬁ - - -
g * JIPPY S
8 P L Ak
3 107} ,.:3.— -
e ik ol T T f -2
Aol e -+ - -4 g £ . >
| ': ”
o 10°}
c
c
: il o X

= » = MT-GibbsMedLDA (M=20, P=240) = = MT-GibbsMedLDA (M=20, P=240

1m@m i MT-GibbsMedLDA (M=1, P=12) 10 | | + =@=+ MT-GibbsMedLDA (M=1, P=12) |3

= & = | DA+SVM (M=20, P=240) | = & =] DA+SVM (M=20, P=240)

SVM (M=20, P=240) SVM (M=20, P=240)
1 1 1 1 1 100 1 1 1 1
100 200 300 400 500 600 200 400 600 800 1000
# Topics # Topics

[Zhu, Zheng, Zhou, & Zhang, KDD2013]

* 20 machines;

* 240 CPU cores

* 1.1M multi-labeled
Wiki pages
* 20 categories (scale to

hundreds/thousands of

categories)




sSummary
# RegBayes:

a bridge Bayesian methods, learning and optimization

o offer an extra freedom to incorporate rich side information

@ Challenges of Bayesian methods in Big Data
o effective regularization to avoid overfitting

0 scalable inference algorithms (variational & Monte Carlo)




More on ICML 2014

# Tutorials, Research papers, and Workshops
# 21 June to 26 June, BICC, Beijing

Welcome to join us!

FO Berjiing
24 | CML:l Bet

International conference on machine learning, 2014
21-26 JUNE 2014 BEIJING
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Thanks!

Some code available at:

http://www.ml-thu.net/~jun




