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What good for VALSE? 



A Probabilistic PC Chair Model 

Arrange a set of invited talks, e.g., A, B, C, D 

 A uniform permutation model 

 

 

P([A;C;B;D]) = P([A;D;C;B]) = ¢ ¢ ¢ =
1

4!



A Probabilistic PC Chair Model 

Arrange a set of invited talks 

 With a preferred list 

 PC chairs offer a concentration center 

 A generalized Mallows model is defined 

 

 

 

¼0 = [C;B;A;D]



A Probabilistic PC Chair Model 

Arrange a set of invited talks 

 Prior knowledge 

 conjugate prior exists for generalized Mallows models 

 Bayesian updates can be done with Bayes‟ rule 

 



A Probabilistic PC Chair Model 

Arrange a set of invited talks 

 Side constraints 

 Mike Jordan can only spend 2 days at ICML 

 Eric Horvitz can only spend 1 day at ICML 

 院士X必须放在第一天 

 Vision 排在 learning前面 

 …… 

 

How can we consider them? 

 Lets‟ do optimization? 

 How about if Bayesian? 

 



 

 

 

What’s Bayes & Why be Bayesian? 



Bayesian Inference 

A coherent framework of dealing with uncertainties 

 

 

 

 

 

 

 

Bayes‟ rule offers a mathematically rigorous computational 
mechanism for combining prior knowledge with incoming 
evidence 

 

Thomas Bayes (1702 – 1761)  

• M: a model from some hypothesis space 

• x: observed data 



Parametric Bayesian Inference 

 

 

A parametric likelihood:  

Prior on θ : 

Posterior distribution 

       is represented as a finite set of parameters      

Examples:  
• Gaussian distribution prior + 2D Gaussian likelihood         → Gaussian posterior distribution  

• Dirichilet distribution prior + 2D Multinomial likelihood → Dirichlet posterior distribution  

• Sparsity-inducing priors + some likelihood models            → Sparse Bayesian inference 



Nonparametric Bayesian Inference 

 

 

A nonparametric likelihood:  

Prior on     : 

Posterior distribution 

Examples:  
      → see next slide 

       is a richer model, e.g., with an infinite set of parameters 



Nonparametric Bayesian Inference 

probability measure binary matrix 

function 

Dirichlet Process Prior [Ferguson, 1973] 

+ Multinomial/Gaussian/Softmax likelihood 

Indian Buffet Process Prior [Griffiths & Gharamani, 2005] 

+ Gaussian/Sigmoid/Softmax likelihood 

Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006] 

+ Gaussian/Sigmoid/Softmax likelihood 



Why Bayesian Nonparametrics? 

Bypass the model selection problem 

 let data determine model complexity (e.g., the number of 
components in mixture models) 

 allow model complexity to grow as more data observed 

 

 

 

 

 

 

 

 

Let the data speak for itself 



Bayesian Inference with Rich Priors 

The world is structured and dynamic! 
Predictor-dependent processes to handle heterogeneous data 
 Dependent Dirichlet Process (MacEachern, 1999) 

 Dependent Indian Buffet Process (Williamson et al., 2010) 

 … 

Correlation structures to relax exchangeability: 
 Processes with hierarchical structures (Teh et al., 2007) 

 Processes with temporal or spatial dependencies (Beal et al., 2002; Blei & Frazier, 2010) 

 Processes with stochastic ordering dependencies (Hoff et al., 2003; Dunson & Peddada, 
2007) 

 … 



Why be Bayesian? 

One of many answers 

Infinite Exchangeability: 
 

 

De Finetti‟s Theorem (1955): if                     are infinitely 

exchangeable, then 
 

 

   for some random variable     



Bayes' Theorem in the 21st Century 

2013 marks the 250th Anniversary of Bayes‟ theorem 
 

Bradley Efron, Science 7 June 2013:  Vol. 340 no. 6137 pp. 1177-

1178  

 

“There are two potent arrows 

in the statistician‟s quiver 

 

there is no need to go hunting 

armed with only one.” 



Overfitting in Big Data 

“with more data overfitting is becoming less of a concern”? 

 

 



Overfitting in Big Data 

 “Big Model + Big Data + Big/Super Cluster” 

Big Learning 

9 layers sparse autoencoder with: 

-local receptive fields to scale up;  

- local L2 pooling and local contrast normalization for 

invariant features 
 - 1B parameters (connections) 

- 10M 200x200 images 

- train with 1K machines (16K cores) for 3 days 

 

-able to build high-level concepts, e.g., cat faces and 

human bodies 

-15.8% accuracy in recognizing 22K objects (70% 

relative improvements) 



Overfitting in Big Data 

Predictive information grows slower than the amount of 

Shannon entropy (Bialek et al., 2001) 



Overfitting in Big Data 

Predictive information grows slower than the amount of 

Shannon entropy (Bialek et al., 2001) 

Model capacity grows faster than the amount of  

predictive information! 



Overfitting in Big Data 

Surprisingly, regularization to prevent overfitting is 

increasingly important, rather than increasingly irrelevant! 
 

Increasing research attention, e.g., dropout training (Hinton, 

2012) 

 

 

 

 

More theoretical understanding and extensions 

 MCF (van der Maaten et al., 2013); Logistic-loss (Wager et al., 

2013); Dropout SVM (Chen, Zhu et al., 2014) 



Therefore … 

 

 

Computationally efficient Bayesian models are becoming 

increasingly relevant in Big data era 

 Relevant: high capacity models need a protection 

 

 Efficient: need to deal with large data volumes 

 



Challenges of Bayesian Inference 

Modeling 

 scientific and engineering data 

 rich side information 
 

Inference/learning 

 discriminative learning 

 large-scale inference algorithms for Big Data 
 

Applications 

 social media 

 adaptation 

Building an Automated Statistician 



 

 

 

Regularized Bayesian Inference 



Regularized Bayesian Inference? 

How to consider side constraints?  

 

likelihood model prior 
posterior 

Not obvious! 

hard constraints 
(A single feasible space) 

soft constraints 
(many feasible subspaces with different  

complexities/penalties) 



Bayesian Inference as an Opt. Problem 

 

 

 

 

 

 

 

Bayes’ rule is equivalent to solving: 

 

direct but trivial constraints on posterior distribution 

Wisdom never forgets that all things have two sides 



Regularized Bayesian Inference 

Bayesian inference with posterior regularization: 

 

 

 

 

 

 

 Consider both hard and soft constraints 

 Convex optimization problem with nice properties  

 Can be effectively solved with convex duality theory 

posterior regularization 

[Zhu, Chen, & Xing, JMLR, in press, 2014] 

Constraints can encode rich structures/knowledge 

„unconstrained‟ equivalence: 



A High-Level Comparison 

prior 
distribution 

likelihood 
model 

posterior 
distribution 

prior 
distribution 

likelihood 
model 

posterior 
distribution 

posterior 
regularization 

Bayes’ Rule 

Optimization 

RegBayes: 

Bayes: 



More Properties 

Representation Theorem:  

 the optimum distribution is: 

 

 where      is the solution of the convex dual problem 

 

Putting constraints on priors is a special case 

 constraints on priors are special cases of posterior regularization 

 

RegBayes is more flexible than Bayes‟ rule 

 exist some RegBayes distribution: no implicit prior and 

likelihood that give back it by Bayes‟ rule 

[Zhu, Chen, & Xing, JMLR, in press, 2014] 



Ways to Derive Posterior Regularization 

From learning objectives 

 Performance of posterior distribution can be evaluated when 
applying it to a learning task 

 Learning objective can be formulated as Pos. Reg.  

 

From domain knowledge 

 Elicit expert knowledge 

 E.g., first-order logic rules  

 

Others … 

 E.g., decision making, cognitive constraints, etc. 



 

 

 

Adaptive, Discriminative, Scalable 

Representation Learning 



Input Data 

Inference, Decision, Reasoning 

Ideal paradigm that 

computers help solve 

big data problems 



A Conventional Data Analysis Pipeline 

Input Data 

Feature Representation 

Computer Algorithms 

Arabian 
negotiations 

against peace 
Israel 

Arabs 
blaming 



Representation Learning 

 

 

 

 
Learning  

Algorithms 

T1 T2 T3 T4 T5 T6 T7 

told 

dirty 

room 

front 

asked 

hotel 

bad 

small 

worst 

poor 

called 

rude 

place 

hotel 

room 

days 

time 

day 

night 

people 

stay 

water 

rooms 

food 

hotel 

food 

bar 

day 

pool 

time 

service 

holiday 

room 

people 

night 

water 

hotel 

area 

staff 

pool 

breakfast 

day 

view 

location 

service 

walk 

time 

food 

beach 

pool 

resort 

food 

island 

kids 

trip 

service 

day 

staff 

time 

view 

beach 

resort 

pool 

ocean 

island 

kids 

good 

restaurants 

enjoyed 

loved 

trip 

area 

great 

good 

nice 

lovely 

beautiful 

excellent 

wonderful 

comfortable 

beach 

friendly 

fresh 

amazing 

Axis's of a semantic representation space: 

E.g., Topic Models 

Learning  

Algorithms 

[Figures from (Lee et al., ICML2009)] 

E.g., Deep Networks 



Some Key Issues 

Discriminative Ability 

 Are the representations good at solving a task, e.g., distinguishing 

different concepts? 

 Can they generalize well to unseen data? 

 Can the learning process effectively incorporates domain knowledge? 

Model Complexity 

 How many dimensions are sufficient to fit a given data set? 

 Can the models adapt when environments change? 

Sparsity/Interpretability 

 Are the representations compact or easy to interpret? 

Scalability 

 Can the algorithms scale up to Big Data applications? 

 



Bayesian Latent Feature Models (finite) 

A random finite binary latent feature models 

 

 

 

 

 

 

       is the relative probability of each feature being on 

 

 giving the latent structure that‟s used to generate the data, e.g.,  



Indian Buffet Process 

A stochastic process on infinite binary feature matrices 

Generative procedure: 

 Customer 1 chooses the first        dishes:  

 Customer i chooses: 
 Each of the existing dishes with probability  

 

        additional dishes, where  

 

cust 1: new dishes 1-3 

cust 2: old dishes 1,3; new dishes 4-5 

cust 3: old dishes 2,5; new dishes 6-8 

[Griffiths & Ghahramani, NIPS 2005] 



Posterior Constraints – classification  

Suppose latent features z are given, we define latent 
discriminant function: 

 

 

Define effective discriminant function (reduce uncertainty): 
 

 

 Posterior constraints with max-margin principle 

 

 

Convex U function 



The RegBayes Problem 

 
 

 

 

 

 where 

 the hinge loss (posterior regularization) is 

 

 

 

 

 



Posterior Regularization with a Gibbs Classifier 

Posterior distribution to learn 

 

Gibbs classifier randomly draws a sample to make prediction 

 

 

 For classification, we measure the loss of classifier  

 

 

 It minimizes the expected loss 



Comparison 

Expected hinge-loss is an upper bound 

 

 

 

For averaging classifier, the RegBayes problem is suitable for 

variational inference with truncation (Zhu et al., JMLR 2014) 

 

For Gibbs classifier, the RegBayes problem is suitable for 

MCMC without truncation 



More Details on MCMC 

RegBayes problem 

 

 

The solution is 

 

 

 where 



More Details on MCMC 

Scale mixture representation: 

 

 

 

 follows (Polson & Scott, 2011) 

Data augmentation representation 

 



More Details on MCMC 

Data augmented posterior 

 

 

 

A Gibbs sampler is as follows 

 Sample  

 a Gaussian distribution if the prior is Gaussian 

 Sample  

 a generalized inverse Gaussian distribution 

 Sample 

 Similar as the Gaussian infinite latent feature model (Griffiths & 

Ghahramani, 2005)  



PAC-Bayes Theory 

Theorem (Germain et al., 2009):  

 for any distribution     ; for any set      of classifiers, for any 

prior     , for any convex function     

 

 

 for any posterior     , for any                  , the following 

inequality holds with a high probability (                ) 

 

 

 

 where 



RegBayes Classifiers 

PAC-Bayes theory 

 

 

RegBayes inference 

 

 

 

Observations： 
 when the posterior regularization equals to (or upper bounds) 

the empirical risk  

 

 the RegBayes classifiers tend to have PAC-Bayes guarantees. 



 

 

 

 

Extensions to Multi-task Learning 



Multi-task Learning (MTL) 

[Wikipedia] MTL is an approach to machine learning that learns 
a problem together with other related problems, using a shared 
representation 

 

 

 

 
 
 
 
 

The goal of MTL is to improve the performance of learning 
algorithms by learning classifiers for multiple tasks jointly 

 

It works particularly well if these tasks have some commonality 
and are generally slightly under sampled 

Figure from Wikipedia 

Author: Kilian Weinberger 

//upload.wikimedia.org/wikipedia/en/a/af/Multi_Task_Learning_Concept,_2010.jpg


Multi-task Representation Learning 

 

Assumption:  

 common underlying representation across tasks 

 

Representative works: 

 ASO (alternating structure optimization): learn a small set of 

shared features across tasks [Ando & Zhang, 2005] 

 Convex feature learning via sparse norms [Argyriou et al., 

2006] 

 



Basic Learning Paradigm  

Tasks:   

N examples per task 

 

Estimate  
 

Consider features 

 

Predict using functions 



Learning a Projection Matrix 

Tasks:   

N examples per task 

 

Estimate  
 

Consider features 

 

Predict using functions 



Max-margin Posterior Regularizations 

Similar as in infinite latent SVMs 

 Averaging classifier 

 

 

 The hinge loss 

 

 

 

 Gibbs classifier 



Experimental Results 
Classification 
 Accuracy and F1 scores on TRECVID2003 and Flickr image datasets 



Experimental Results 

Multi-label Classification (multiple binary classification) 

 Accuracy and F1 scores (Micro & Macro) on Yeast and Scene datasets 

Model Acc F1-Macro F1-Micro 

YaXue [Xue et al., 2007] 0.5106 0.3897 0.4022 

Piyushrai [Piyushrai et al., 2010] 0.5424 0.3946 0.4112 

MT-iLSVM 0.5792 ± 0.003 0.4258 ± 0.005 0.4742 ± 0.008 

Gibbs MT-iLSVM  0.5851 ± 0.005 0.4294 ± 0.005 0.4763 ± 0.006 

Model Acc F1-Macro F1-Micro 

YaXue [Xue et al., 2007] 0.7765 0.2669 0.2816 

Piyushrai [Piyushrai et al., 2010] 0.7911 0.3214 0.3226 

MT-iLSVM 0.8752 ± 0.004 0.5834 ± 0.026 0.6148 ± 0.020 

Gibbs MT-iLSVM 0.8855 ± 0.004 0.6494 ± 0.011 0.6458 ± 0.011 



Experimental Results 

Multi-task Regression 

 School dataset (139 regression tasks) – a standard dataset for 
evaluating multi-task learning 

 Percentage of explained variance (higher, better) 

 

 



RegBayes with Max-margin  

                                Posterior Regularization  

Max-margin Topics and Fast Inference 

 (Zhu, et al., JMLR‟12; Zhu et al., JMLR‟14) 

Nonparametric Max-margin Relational  

Models for Social Link Prediction 
(Zhu, ICML‟12) 

U 

 V‟ 

X Y 

Nonparametric Max-margin Matrix  

Factorization  
(Xu, Zhu, & Zhang, NIPS‟12, ICML‟13) 

Multimodal  Representation Learning 
(Chen, Zhu, et al, PAMI‟12) 

Infinite SVMs 

 (Zhu et al., ICML‟11) 

Infinite Latent SVMs 

 (Zhu, et al., JMLR„14) 

* Works from other groups are not included. 



Robust RegBayes with FOL Knowledge 

Goal of “Statistics + Knowledge” 

 

Incorporate domain knowledge into 
Bayes models 

 elicit informative priors 

 RegBayes: posterior regularization via 
FOL rules 

 

Resolve the uncertainty of domain 
knowledge in FOL forms 

 A selective spike-and-slab prior 

[Mei, Zhu & Zhu, ICML 2014] 



Some Empirical Results 

 

 

 

 

 

 

 

 

 

 

 

LDA: standard unsupervised topic model (Blei et al., 2003) 

Fold.all:  hand-tuning rule weights by experts (Andrzejewski et al., 
2011) 



Robustness to Unreliable Rules 

 

 

 

 

 

 

 

 

More results on interpretability of latent topics and 

competitive prediction performance (Mei et al., 2014) 



 

 

 

Scalable Algorithms 



Online Learning Algorithms 

Works on a single machine; Explore data redundancy 

Scale up to infinite size data sets, especially for streaming 

data 

[Shi & Zhu, ICML2014] 

feasible zone. 

qt (w)

qt+1(w)

qt (w)

qt+1(w)

feasible zone. 

Online Bayesian Passive-Aggressive Learning 

(a) Passive update (b) Aggressive update 

Performance is guaranteed with provable regret bounds. 



Online Learning Algorithms 

Works on a single machine 

Scale up to infinite size data sets, especially for streaming 

data 

[Shi, & Zhu, ICML2014] 

Online Bayesian Passive-Aggressive Learning 

• 1.1M Wiki pages (standard desktop) 



Distributed Inference Algorithms 

Leverage big clusters 

Allow learning big models that can‟t fit on a single machine 

[Zhu, Zheng, Zhou, & Zhang, KDD2013] 

• 20 machines;  

• 240 CPU cores 

 

• 1.1M multi-labeled   

    Wiki pages 

• 20 categories (scale to  

   hundreds/thousands of  

   categories) 

 



Summary 

RegBayes:  

 bridge Bayesian methods, learning and optimization 

 offer an extra freedom to incorporate rich side information 

 

Challenges of Bayesian methods in Big Data 

 effective regularization to avoid overfitting 

 scalable inference algorithms (variational & Monte Carlo) 

 

 



More on ICML 2014 

 

Tutorials, Research papers, and Workshops 

21 June to 26 June, BICC, Beijing 

 

Welcome to join us! 
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Thanks! 
 

Some code available at: 

http://www.ml-thu.net/~jun 


