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Background: Massive Data

High-Dimensional: number of features is
huge

High-Volume: number of collected samples
is huge

High-Complexity: interactions among fea-
tures and/or samples have complex struc-
ture



Challenges in Massive Data Analysis

Modeling challenges:
I Flexible statistical methods

Computational challenges:
I Scalable optimization
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Example I: Visual Analysis

Real scene image data:
I Large-scale: ∼ 107 images in ImageNet

I Image clustering and classification (TIP’12, TPAMI’13, TIT’14)



Example I: Visual Analysis

Real scene image data:
I Large-scale: ∼ 107 images in ImageNet

I Image clustering and classification (TIP’12, TPAMI’13, TIT’14)



Example II: Network Analysis

Web graph data:
I High-dimensional: > 107 nodes (web sites) and > 109 edges

(page links)

I Dense subgraph finding on networks (JMLR’13)

Web graph Commercial airline travel-route network
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Example III: Computational Biology
Biology Data:
I High-dimensional and complex structures: tens of thousands

of genes, missing data and noisy observations

I Tumor classification and influenza serological data integration
(TPAMI’13, PLOS ONE’13)
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Sparsity-Constrained Learning

I Sparsity prior: to capture the low-dimensional structure of
high-dimensional data

I Formulation: `0-constrained minimization

min
x∈Ω

f(x), s.t. ‖x‖0 ≤ k .

I Advantages: Better interpretation and improved statistical
behavior in high dimensional setup

I Challenges: NP-hard and Non-convex combinatorial problem
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Examples

= += +

Compressive sensing:

min
x
‖y − Ax‖2, s.t. ‖x‖0 ≤ k .

Sparse principal component analysis:

max
x

x>Ax, s.t. ‖x‖ = 1, ‖x‖0 ≤ k .

Gaussian graphical models learning:

min
Ω�0
− log det(Ω)+〈Σn,Ω〉, s.t. ‖Ω‖0 ≤ k .
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Greedy Selection Algorithms

I Compressive sensing literature
I Orthogonal Matching Pursuit (OMP) (TG07)
I Compressive Sampling Matching Pursuit (CoSaMP) (NT09)
I Iterative Hard Thresholding (IHT) (BD09)
I · · ·

I For the generic objective
I Forward Greedy Selection (FGC) (SSZ10)
I Forward-Backward algorithm (FoBa) (Zhang08)
I Gradient Support Pursuit Method (GraSP) (BRB13)
I · · ·

This talk focuses on truncation-type algorithms for
I Sparse eigenvalue problems
I `0-constrained generic minimization
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Largest k -Sparse Eigenvalue Problem
Given a p × p positive semi-definite matrix A .

max x>Ax, s.t. ‖x‖ = 1, ‖x‖0 ≤ k .

Motivation
A admits a perturbation formulation A = Ā + E
I Ā : true matrix with sparse dominant eigenvector x̄.
I E: random perturbation due to, e.g., finite sampling.
I Can we approximately estimate x̄ from the noisy observation

A with large p but small k̄ = ‖x̄‖0?
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Our Contribution

I Algorithm: an efficient power-truncation procedure to estimate
the sparse dominant eigenvector.

I Theory: a perturbation theory based error analysis for the
proposed algorithm.

I Applications: sparse PCA and densest k -subgraph finding
problems.

Yuan & Zhang, JMLR, 2013



Truncated Power Method

Power Method
Choose a starting point x0.
For t = 1, 2, ...

xt = Axt−1/‖Axt−1‖.
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(b) Let Ft = supp(x′t , k) be the indices of x′t with the largest
k absolute values;

(c) Compute x̂t = Truncate(x′t ,Ft );

(d) Normalize xt = x̂t/‖x̂t‖.

Key idea: maintain k -sparsity at each power iteration.



Truncated Power Method

Power Method
Choose a starting point x0.
For t = 1, 2, ...

xt = Axt−1/‖Axt−1‖.

Truncated Power Method
Choose a starting point x0.
For t = 1, 2, ...

(a) Compute x′t = Axt−1/‖Axt−1‖;

(b) Let Ft = supp(x′t , k) be the indices of x′t with the largest
k absolute values;

(c) Compute x̂t = Truncate(x′t ,Ft );

(d) Normalize xt = x̂t/‖x̂t‖.

Key idea: maintain k -sparsity at each power iteration.



Sparse Recovery Analysis

Data model:
A = Ā + E.

Key techniques:
I Perturbation theory of symmetric eigenvalue problem.
I Convergence analysis of untruncated power method.
I Error analysis of hard-thresholding operation.

Main result on the estimation error
Under proper conditions, if we start iteration from an appro-
priate x0, then xt converges geometrically towards x̄ until
‖xt − x̄‖ = O(ρ(E, s)) where s = 2k + k̄ and ρ(E, s) =
max‖x‖0≤s x>Ex.
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Applications

I Sparse PCA: iterative deflation for calculating multiple loading
vectors:

I Densest k -Subgraph Finding: find the a set of k vertices with
maximum average degree in the subgraph induced by this set.

max
π∈Rn

π>Wπ, s.t. π ∈ {1, 0}n, ‖π‖0 = k .



Results on Web Graph Data

Graph Nodes (|V |) Total Arcs (|E |) Average Degree
hollywood-2009 1,139,905 113,891,327 99.91
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Results on Air-Travel Route Data

A graph of size |V | = 456 and |E | = 71, 959:
I Vertices: 456 busiest commercial airports in USA and Canada
I Edge weights: inverse of the mean flight time

TPower Greedy-Feige
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Sparsity-Constrained Minimization

min
x∈Rp

f(x), s.t. ‖x‖0 ≤ k ,

where f is a convex loss function, e.g.,

I logistic loss for logistic regression

I hinge loss for support vector machines

I exponential loss for boosting classification



Gradient Hard Thresholding Pursuit (GraHTP)

Set x(0) = 0.
For t = 1, 2, ...,

(a) Compute x̃(t) = x(t−1) − η∇f(x(t−1));

(b) Compute x(t) = x̃(t)
k as the truncation of x̃(t) with top k

(in magnitude) entries preserved;

(c) Debiasing: x(t) = arg min{f(x), supp(x) ⊆ supp(x(t))}
(optional);

I (a): Traditional gradient descent, η is the step-size
I (b): Truncation operation to keep the iterate k -sparse
I (c): An optional debiasing step

Yuan et al., ICML, 2014
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Convergence

Under proper conditions,

I the sequence {x(t)} defined by GraHTP converges in a finite
number of iterations.

I the sequence {f(x(t))} defined by GraHTP without debiasing
step (or Fast GraHTP) converges.



Sparse Recovery

Key techniques:
I Convergence analysis of unconstrained gradient descent

procedure.
I Error analysis of truncation operation.

Main results
Let x̄ be an arbitrary k̄ -sparse vector and k ≥ k̄ . Under proper
conditions,
I the sequence {x(t)} defined by GraHTP converges

geometrically towards x̄ until ‖x(t) − x̄‖ = O(‖∇k f(x̄)‖)
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where s = 2k + k̄ .
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Remarks

I In the ideal case where ∇f(x̄) = 0, under proper conditions,
GraHTP is able to recover x̄ in finite iterations.

I In the setup of CS, GraHTP reduces to HTP (Foucart12)
which requires weaker RIP condition than prior CS algorithms.

I Although have similar theoretical guarantees, GraHTP is
cheaper than GraSP (BRB13) in iteration.



Applications

Sparsity-constrained M-estimation:

min
w

f(w) =
1
n

n∑
i=1

φ(x(i) | w), subject to ‖w‖0 ≤ k .

I Sparsity-constrained logistic regression

I Sparsity-constrained support vector machines

I Sparsity-constrained Gaussian graphical models learning



Results on News20 Data
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Figure: Logistic regression: Classification error and CPU running time
curves of the considered methods.
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Motivation

I First-order methods: iterate fast but converge slow.

I Newton-type methods gain significant interests in
`1-regularized/-constrained convex minimization.

I Natural question: can we adopt Newton-type methods for
`0-constrained minimization?



Constrained Newton-type Methods
To minimizes a smooth convex objective f over a convex set Ω, i.e.,

min
x

f(x), s.t. x ∈ Ω,

constrained Newton-type methods
I form a quadratic approximation to the function around x(t):

Qf (y; x(t)) := f(x(t))+∇f(x(t))>(y−x(t))+
1
2

(y−x(t))>H(t)(y−x(t)),

I minimizes the quadratic model over the original feasible set Ω:

x̃(t) = arg min
y∈Ω

Qf (y; x(t))

I perform line search:

x(t+1) = x(t) + β(x̃(t) − x(t)),

I The method has a super-linear rate of convergence at a local
minimizer (Bertsekas99).



Proximal Newton-type Methods

Constrained Newton-type methods can be extended to proximal
Newton-type methods for composite optimization:

min
x

f(x) + h(x), s.t. x ∈ Ω,

where f is smooth and h is non-smooth.

I construct a scaled proximal mapping around x(t):

x̃(t) = arg min
y∈Ω

{
Qf (y; x(t)) + h(y)

}
I perform line search:

x(t+1) = x(t) + β(x̃(t) − x(t)),

I The method has a super-linear rate of convergence at a local
minimizer (LSA14).



Newton-type Greedy Pursuit

Idea: to adapt the constrained Newton-type methods to
`0-constrained minimization.

Initialization: set x(0) = 0.
For t = 1, 2, ...,
Find any x(t) with ‖x(t)‖0 ≤ k such that for all ȳ with ‖ȳ‖0 ≤ k ,

Qf (x(t); x(t−1)) ≤ Qf (ȳ; x(t−1)) + ε,

where ε ≥ 0 controls the solution precision.

Yuan & Liu, CVPR, 2014
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Choosing H(t)

I When Hessian is readily available: set H(t) = ∇2f(x(t)).

I When exact estimation of Hessian is expensive: use
quasi-Newton strategy to build H(t) ≈ ∇2f(x(t)).

I Most strategies for choosing Hessian approximations in
Newton-type methods can be adapted to choosing H(t).



Constrained Quadratic Model

We use IHT to solve the `0-constrained quadratic model.

Iterative Hard-Thresholding
Initialization: set y(0) = x(t−1).
For t = 1, 2, ...,
(S1) Compute gradient descent:

ỹ(τ) = y(τ−1) − η∇Qf (y(τ−1); x(t−1)).

(S2) Identify support: T (τ) = supp(ỹ(τ), k);
(S3) Minimizer over support:

y(τ) = arg min
supp(y)⊆T (τ)

Qf (y; x(t−1)).



Computational Cost

I Step S1: O(kp) for sparse matrix-vector product.

I Step S3: solve a linear system of size k .

I Observed to be as efficient as first-order greedy methods in
practice



Sparse Recovery

Key techniques:
I Convergence analysis of unconstrained Newton-type

procedure.
I Error analysis of truncation operation.

Main result
Let x̄ be an arbitrary k̄ -sparse vector and k ≥ k̄ . Under proper
conditions, the sequence {x(t)} defined by Newton-type greedy
pursuit converges superlinearly towards x̄ until ‖x(t) − x̄‖ =
O(‖∇s f(x̄)‖) where s = 2k + k̄ .
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Simulation
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Figure: Logistic regression: parameter estimation error, support recovery
precision and running time.



Results on RCV1 Data
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Figure: Logistic regression: objective value convergence curves and
testing error curves.
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Take-Home Messages

Truncation-type methods work favorably for sparsity models:

I TPower for sparse eigenvalue problems: power method +
hard-truncation.

I GraHTP for `0-constrained minimization: gradient descent
method + hard-truncation.

I NTGP for `0-constrained minimization: Newton-type method +
hard-truncation.
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Thank You!
Questions?
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