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Sparsity Models



Background: Massive Data

High-Dimensional: number of features is
huge

High-Volume: number of collected samples
is huge

High-Complexity: interactions among fea-
tures and/or samples have complex struc-
ture




Challenges in Massive Data Analysis

Modeling challenges:
i @ » Flexible statistical methods
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Modeling challenges:
@ i > Flexible statistical methods

Computational challenges:
» Scalable optimization




Example I: Visual Analysis

Real scene image data:
» Large-scale: ~ 107 images in ImageNet



Example |: Visual Analysis

Real scene image data:
» Large-scale: ~ 107 images in ImageNet

» Image clustering and classification (TIP'12, TPAMI13, TIT14)
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Example Il: Network Analysis

Web graph data:

» High-dimensional: > 107 nodes (web sites) and > 10° edges
(page links)



Example Il: Network Analysis

Web graph data:

» High-dimensional: > 107 nodes (web sites) and > 10° edges
(page links)
» Dense subgraph finding on networks (JMLR'13)

Web graph Commercial airline travel-route network




Example Ill: Computational Biology

Biology Data:

» High-dimensional and complex structures: tens of thousands
of genes, missing data and noisy observations



Example Ill: Computational Biology

Biology Data:
» High-dimensional and complex structures: tens of thousands
of genes, missing data and noisy observations

» Tumor classification and influenza serological data integration
(TPAMI13, PLOS ONE'13)




Sparsity-Constrained Learning

» Sparsity prior: to capture the low-dimensional structure of
high-dimensional data

» Formulation: €p-constrained minimization

min f(x), s.t. |Ixllo < k.
XeQ



Sparsity-Constrained Learning

» Sparsity prior: to capture the low-dimensional structure of
high-dimensional data

» Formulation: €p-constrained minimization

min f(x), s.t. |Ixllo < k.
XeQ

» Advantages: Better interpretation and improved statistical
behavior in high dimensional setup

» Challenges: NP-hard and Non-convex combinatorial problem



Examples

= Compressive sensing:
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Examples

TIT

Compressive sensing:

min [ly - Ax|?, st |Ixllo < k.

Sparse principal component analysis:

max x'Ax, s.t x|l =1, lIxllo < k.
X

Gaussian graphical models learning:

réun log det(Q)+(Xn, Q2), s.t. [1Q6o < k.



Greedy Selection Algorithms

» Compressive sensing literature
» Orthogonal Matching Pursuit (OMP) (TG07)
» Compressive Sampling Matching Pursuit (CoSaMP) (NT09)
> lterative Hard Thresholding (IHT) (BD09)
» For the generic objective
» Forward Greedy Selection (FGC) (SSZ10)
» Forward-Backward algorithm (FoBa) (Zhang08)
» Gradient Support Pursuit Method (GraSP) (BRB13)



Greedy Selection Algorithms

» Compressive sensing literature

» Orthogonal Matching Pursuit (OMP) (TG07)
» Compressive Sampling Matching Pursuit (CoSaMP) (NT09)
> lterative Hard Thresholding (IHT) (BD09)

» For the generic objective

» Forward Greedy Selection (FGC) (SSz10)
» Forward-Backward algorithm (FoBa) (Zhang08)
» Gradient Support Pursuit Method (GraSP) (BRB13)

> e

This talk focuses on truncation-type algorithms for
» Sparse eigenvalue problems
» {p-constrained generic minimization
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Largest k-Sparse Eigenvalue Problem
Given a p x p positive semi-definite matrix A.

max xTAx, s.t x|l = 1,|Ixllo < k.



Largest k-Sparse Eigenvalue Problem
Given a p x p positive semi-definite matrix A.

max xTAx, s.t x|l = 1,|Ixllo < k.

kO TN T

Motivation
A admits a perturbation formulation A = A + E

» A: true matrix with sparse dominant eigenvector X.
» E: random perturbation due to, e.g., finite sampling.



Largest k-Sparse Eigenvalue Problem
Given a p x p positive semi-definite matrix A.

max xTAx, s.t x|l = 1,|Ixllo < k.

kO TN T

Motivation
A admits a perturbation formulation A = A + E

» A: true matrix with sparse dominant eigenvector X.
» E: random perturbation due to, e.g., finite sampling.

» Can we approximately estimate X from the noisy observation
A with large p but small k = ||x]|p?



Our Contribution

» Algorithm: an efficient power-truncation procedure to estimate
the sparse dominant eigenvector.

» Theory: a perturbation theory based error analysis for the
proposed algorithm.

» Applications: sparse PCA and densest k-subgraph finding
problems.

Yuan & Zhang, JMLR, 2013



Truncated Power Method

Power Method

Choose a starting point xg.
Fort=1,2,..
Xt = Axp—1 /I|AX¢ 1.




Truncated Power Method

Power Method

Choose a starting point xg.
Fort=1,2,..
Xt = Axp—1 /I|AX¢ 1.

Truncated Power Method

Choose a starting point xg.
Fort=1,2,..

(a) Compute x; = Axi—1/llAXt-1l;

(b) Let Fr = supp(x;, k) be the indices of x; with the largest
k absolute values;

(c) Compute X; = Truncate(x;, Ft);
(d) Normalize x; = X;/||X:l|.

Key idea: maintain k-sparsity at each power iteration.



Sparse Recovery Analysis

Data model:
A=A+E.
Key techniques:
» Perturbation theory of symmetric eigenvalue problem.
» Convergence analysis of untruncated power method.
» Error analysis of hard-thresholding operation.



Sparse Recovery Analysis

Data model:
A=A+E.
Key techniques:
» Perturbation theory of symmetric eigenvalue problem.
» Convergence analysis of untruncated power method.
» Error analysis of hard-thresholding operation.

Main result on the estimation error

Under proper conditions, if we start iteration from an appro-
priate xp, then x; converges geometrically towards x until
lIxt — x|l = O(p(E,s)) where s = 2k + k and p(E,s) =
MaXixj,<s X ' EX.




Applications

» Sparse PCA: iterative deflation for calculating multiple loading
vectors:

» Densest k-Subgraph Finding: find the a set of k vertices with
maximum average degree in the subgraph induced by this set.

max ' Wr, s.t. me {1,0)", |Inllo = k.
neRN



Results on Web Graph Data

Graph Nodes (|V|) Total Arcs (|E|]) Average Degree

hollywood-2009 1,139,905 113,891,327 99.91
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Results on Air-Travel Route Data

A graph of size |V| = 456 and |E| = 71, 959:
» Vertices: 456 busiest commercial airports in USA and Canada
» Edge weights: inverse of the mean flight time

TPower Greedy-Feige
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Sparsity-Constrained Minimization

in f 1. <k,
min (x), st ixllo <

where f is a convex loss function, e.g.,
» logistic loss for logistic regression
» hinge loss for support vector machines

» exponential loss for boosting classification



Gradient Hard Thresholding Pursuit (GraHTP)

Set x(0) = 0.

Fort=1,2,..,

(a) Compute X() = x(t=1) — yv(x(t=1));

(b) Compute x(t) = )”(,Et) as the truncation of X(t) with top k
(in magnitude) entries preserved;

(c) Debiasing: x(!) = argmin{f(x), supp(x) < supp(x()}
(optional);
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Gradient Hard Thresholding Pursuit (GraHTP)

Set x(0 = 0.
Fort=1,2,..,
(a) Compute X() = x(t=1) — pvf(x(t-1));
n
(b) Compute x(t) = )”(,Et) as the truncation of X(t) with top k
(in magnitude) entries preserved;

(c) Debiasing: x(!) = argmin{f(x), supp(x) < supp(x()}
(optional);

» (a): Traditional gradient descent, r; is the step-size
» (b): Truncation operation to keep the iterate k-sparse
> (c): An optional debiasing step

Yuan et al., ICML, 2014



Convergence

Under proper conditions,

» the sequence {x(} defined by GraHTP converges in a finite
number of iterations.

» the sequence {f(x(1)} defined by GraHTP without debiasing
step (or Fast GraHTP) converges.



Sparse Recovery

Key techniques:

» Convergence analysis of unconstrained gradient descent
procedure.

» Error analysis of truncation operation.



Sparse Recovery

Key techniques:

» Convergence analysis of unconstrained gradient descent
procedure.

» Error analysis of truncation operation.

Main results

Let X be an arbitrary k-sparse vector and k > k. Under proper
conditions,

» the sequence {x(!)} defined by GraHTP converges
geometrically towards X until [|x() — X|| = O(||V«f(X)I])

» the sequence {x(} defined by FGraHTP converges
geometrically towards X until [|x() — X|| = O(||Vsf(X)I))
where s = 2k + k.




Remarks

» In the ideal case where Vf(X) = 0, under proper conditions,
GraHTP is able to recover X in finite iterations.

> In the setup of CS, GraHTP reduces to HTP (Foucart12)

which requires weaker RIP condition than prior CS algorithms.

» Although have similar theoretical guarantees, GraHTP is
cheaper than GraSP (BRB13) in iteration.



Applications

Sparsity-constrained M-estimation:
min f(w qu | w), subject to [[w]lo < k.
» Sparsity-constrained logistic regression

» Sparsity-constrained support vector machines

» Sparsity-constrained Gaussian graphical models learning



Results on News20 Data
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Figure: Logistic regression: Classification error and CPU running time
curves of the considered methods.
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Newton-type Greedy Pursuit



Motivation

» First-order methods: iterate fast but converge slow.

» Newton-type methods gain significant interests in
{1-regularized/-constrained convex minimization.

» Natural question: can we adopt Newton-type methods for
{o-constrained minimization?



Constrained Newton-type Methods
To minimizes a smooth convex objective f over a convex set €, i.e.,

mxin f(x), st xe€Q,

constrained Newton-type methods
» form a quadratic approximation to the function around x(t):

Qu{yix(0) = F(xO)+HXO)T (y-xO) 4 5 (y=xO)THO(y-x0),
» minimizes the quadratic model over the original feasible set Q:

() — arg min Q(y; X(t))
yeQ2

» perform line search:
K1) — (1) +ﬂ(;((t) _ X(t)),

» The method has a super-linear rate of convergence at a local
minimizer (Bertsekas99).



Proximal Newton-type Methods

Constrained Newton-type methods can be extended to proximal
Newton-type methods for composite optimization:

mXin f(x) + h(x), st. x € Q,

where f is smooth and h is non-smooth.

» construct a scaled proximal mapping around x(1):

%0 = argmin {Q(y; x) + h(y))
yeQ2

» perform line search:
x(t1) — (1) +,3()~<(t) _ X(t)),

» The method has a super-linear rate of convergence at a local
minimizer (LSA14).



Newton-type Greedy Pursuit

Idea: to adapt the constrained Newton-type methods to
{o-constrained minimization.



Newton-type Greedy Pursuit

Idea: to adapt the constrained Newton-type methods to
{o-constrained minimization.

Initialization: set x(©) = 0.
Fort=1,2,...,
Find any x(® with |x(V]lo < k such that for all y with ||yllo < k,

Qr(xW; x(=1) < y(7; xD) + ¢,

where € > 0 controls the solution precision.

Yuan & Liu, CVPR, 2014



Choosing H(®

» When Hessian is readily available: set H() = v2f(x(1)).

» When exact estimation of Hessian is expensive: use
quasi-Newton strategy to build H() ~ V2f(x(0).

» Most strategies for choosing Hessian approximations in
Newton-type methods can be adapted to choosing H(®).



Constrained Quadratic Model

We use IHT to solve the £y-constrained quadratic model.

lterative Hard-Thresholding

Initialization: set y(®) = x(t=1),
Fort=1,2,..,
(S1) Compute gradient descent:

5O =y vy (y™N; x-1),

(S2) Identify support: T = supp(y(, k);
(S3) Minimizer over support:

y = argmin Q;(y; x(1).
supp(y)cT(™)




Computational Cost

» Step S1: O(kp) for sparse matrix-vector product.
» Step S3: solve a linear system of size k.

» Observed to be as efficient as first-order greedy methods in
practice



Sparse Recovery

Key techniques:

» Convergence analysis of unconstrained Newton-type
procedure.

» Error analysis of truncation operation.



Sparse Recovery

Key techniques:

» Convergence analysis of unconstrained Newton-type
procedure.

» Error analysis of truncation operation.

Main result

Let X be an arbitrary k-sparse vector and k > k. Under proper
conditions, the sequence {x(!)} defined by Newton-type greedy
pursuit converges superlinearly towards x until [|x() — x| =
O(IIVsf(X)I) where s = 2k + k.




Simulation

p = 2000, k = 200,
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Figure: Logistic regression: parameter estimation error, support recovery
precision and running time.



Results on RCV1 Data
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Figure: Logistic regression: objective value convergence curves and
testing error curves.
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Take-Home Messages

Truncation-type methods work favorably for sparsity models:

» TPower for sparse eigenvalue problems: power method +
hard-truncation.

» GraHTP for £p-constrained minimization: gradient descent
method + hard-truncation.

» NTGP for £y-constrained minimization: Newton-type method +
hard-truncation.
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Thank You!
Questions?
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